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Disk and Storage System Chapter 1:	
Basics
by Volker Herminghaus

Overview1.1	

Storage Hardware Situation and Outlook1.1.1	

Disk media are the entities that all persistent user data is eventually stored on. Because 
the surface of a disk medium can be permanently magnetized, disks can store information 
across reboots and power failures, when data residing in the computer's internal volatile 
memory is lost. Disks can not be replaced by any amount of volatile memory. After all, 
where would you put all that data after a shutdown? But a transition is slowly getting 
under way: A few months before work on this book was begun, Apple Inc. released a 
notebook computer that did not have a disk drive but used flash memory instead. EMC, a 
vendor of mass storage systems, announced a storage array that used flash. These events 
marked the beginning of a trend away from moving macroscopic mechanical spindles for 
storing data - an incredibly arcane concept when compared to light-based fibre-channel 
communications and memory cells holding only a few dozen electrons per bit.

However, flash is still much more expensive than disk storage, and even with prices 
falling and some problematic properties of flash being alleviated, disk based storage sys-
tems will be here for a long time. They will eventually be found at the back end of the 
storage chain, similar to tape reels in the times of the old mainframe computers. Disk 
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storage will still need to be managed, and volume management software will still do that 
job. Emphasis will likely be shifting from performance towards reliability, as more people 
become aware of the fact that with the amount of data processed today, data errors will be 
a frequent problem very soon. Error rates looked extremely low a few years ago, but when 
multi-terabyte databases are processed at high speed around the clock, the seemingly low 
probability for errors that slip through all error checking and prevention mechanisms soon 
turns to certainty.

Rock Bottom Basics of Hard Disks
You probably know most of this already, but a little walk-through still makes sense because 
a lot of the terminology introduced here will be used in later chapters. You can skip this if 
you are very familiar with the interior of hard disks.

A hard disk consists of one or more flat, round platters covered with magnetic mate-
rial and fixed to a spindle rotating at around 5,000 to 15,000 rpm. At an extremely short 
distance (about 20nm or 1/30th the wavelength of visible light!) above the platters there 
are one or more arms ("actuators") moving perpendicular to the rotation if the disks. These 
arms carry (usually) one tiny solenoid called the read/write head that serves two purposes: 
When a current is sent through it, then it creates a magnetic field that permanently mag-
netizes the surface of the disk platter. This is called the write cycle. In the read cycle, no 
current is sent to the solenoid and the magnetic field rushing along below it induces a tiny 
current which is then caught by appropriate circuitry and ultimately converted to a binary 
value, 0 or 1. This bit is shifted into a register while the next bit is read. When a full byte 
is assembled, the byte is put into a buffer while the next byte is read and so on.

Current 1TB 3.25" disks have bit densities of more than 100 GBit per square inch.
Data on a disk is organized in blocks (also called sectors), and a sector or block is the 

smallest addressable entity in disk input/output (or I/O). That means that a disk will always 
transfer whole blocks to the host computer. The length of a block is usually 512 bytes, 
although some disks use 1024 byte blocks. Each block is protected by a checksum that is 
written behind its usable contents and is not accessible at the user level. Because of the 
layout of the disk data hard disks are so-called "block addressed devices". I.e. it is not pos-
sible to directly change a certain byte or bit on a disk, but the whole sector must be read 
from the host, modified, and written back. This alone makes access to a disk very different 
from access to random access memory (RAM).

Furthermore disk data is organized into tracks (all sectors on a surface that are located 
at the same distance from the center) and cylinders (the same track each across all plat-
ters). Fortunately, both of these can be considered irrelevant today; they are mere remnants 
of past physical qualities and are merely emulated for backwards compatibility. A disk is 
now simply a device that can read and write blocks of data, linearly addressed by the block 
number.

From here on we will use the term "extent" to specify a stretch of magnetic storage 
that starts at a certain block number and is a given number of blocks long. It is the most 
convenient data structure when discussing block addressed devices.
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Physical Limits1.1.2	

Whenever one has to deal with physical entities one has to deal with the limits of same. 
In contrast to objects of the virtual world, physical objects are rigid, inflexible, error-prone 
and generally undesirable. The purpose of a great amount of software in data centers is 
mostly to replace all physical objects with virtual counterparts, which can then be used 
instead of the physical entities. Physical disks are among the most limiting entities nowa-
days, because they are still dominated by mechanical access methods. This is extremely 
arcane in comparison to almost all other computer system's components, which are based 
on electrical or optical components.

Let us look at the limiting physical qualities of physical hard disks:

Performance

Imagine the mechanical overhead that a disk read or write incurs. First of all, the arm 
assembly carrying the read/write heads has to be moved to the correct cylinder and the 
correct read/write head is electronically selected. Moving the actuators takes several mil-
liseconds, roughly between 1ms for a close track to 10ms for one that is far away. Next, 
it must settle on the track (i.e. stop vibrating from the sudden rapid movement). Then the 
disk electronics must wait for the appropriate sector to actually fly by under the read/write 
head. This takes, on average, half a disk rotation (the probability for the sector being "close" 
vs. being "far" is 50%).

Very clever algorithms in the disk's on board controller, like tagged command queuing 
and elevator sorting try to minimize the effects of the mechanical nature of the device, 
but after all there remains an average latency of about 5 ms even for very good disks. 
That means that on average, we can get no more than 200 independent operations per 
second to or from a disk device. Also, just for comparison, or a bit of data travelling inside 
a computer would have travelled 1000 km in the same time that the disk read/write moved 
those 5 mm!

Reliability

If a hard disk fails your data is likely lost forever. Occasionally you may only have a faulty 
on-board controller which you might replace but more likely the mechanical or magnetic 
parts have suffered damage. Basically, if you are using hard disks without some kind of 
redundancy layer on top of it, your only hope is a really good backup system.

Size and Performance per Size

Size is less of a problem now than it used to be, but no matter how many disks you have 
attached to your system, storing a file that is larger than your disks will simply fail. Now of 
course you can get Terabyte-sized hard disks, but they are still limited to around 200 I/Os 
per second. It is hard to imagine a TB in an enterprise database idling around at no more 
than 200 accesses per second While that sounds reasonable to the average home computer 
user, data centers handle thousands of users per server concurrently. The real performance 
measure we need is not size. It is not performance, as measured in transactions per second. 
It is performance per size! How many transactions per second can be done per GB of data-
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base, is the question. A TB of data is never just sitting around except maybe as a database 
export file destined for a backup device. This kind of file is read and written sequentially 
so there is less of a bottleneck. But for general-purpose, especially for database volumes, 
the most important question is how many TX/s/GB can the volume deliver to the database. 
Due to the exponential increase in hard disk size, the ratio of performance per GigaByte 
has dropped to abysmal levels in recent years.

Flexibility

To put it shortly: disks are not flexible. You cannot change their size nor their speed nor 
their reliability. The only flexible thing about hard disks is the wire that attaches it to the 
computer.

Manageability

Managing a disk that is directly attached to a server means physically going there and 
plugging or unplugging it from the server or power supply. No remote management is 
usually possible.

Moore's Law and the Problem with Mechanics
Hard disks became anachronistic in the 1980's when computers started outpacing disks 
by a bigger margin every year. Unfortunately they are still anachronistic today and we are 
stuck with them. A well-known fact known as "Moore's law" states that the density of 
microelectronics doubles every 18 months (or gains a factor of ten every five years). This 
is basically true for hard disks as well. However, while in computers denser structures on 
chips increase their processing speed, for disks the increasing density led merely to three 
things:

1)	 Increased processing speed in the on board controller of the disk (which never was 
much of a problem anyway)

2)	 Increased speed of sequential read/write operations because more data is packed 
onto each track and is read in the same revolution. This is an advantage only in large 
sequential transfers, which are not typical for data center usage (databases)

3)	 Increased capacity of the disk, meaning more accesses per second are directed to the 
same hard disk

What Moore's law of exponential growth did not help was the rotational speed of the 
platters, which is limited by the centrifugal force exerted on the platters, and the speed at 
which the read/write heads are moved by the actuator. The latter is limited by the amount 
of heat that is generated and must be dissipated from the device. There were efforts to put 
several actuators into the same housing as well as several read-write heads per platter onto 
each actuator but for various reasons they all failed in the long run. So in the end Moore's 
law ran away generating gigantic amounts of storage space, bandwidth and processing 
power while leaving the hard disks' transactions per second sadly behind, forever tied to 
their mechanical internals. That is still the situation we are facing today.

It is also the reason why hard disks destined for private or SOHO use are usually larger 
than "server-grade" disks. It just does not make a bit of sense putting 1 TB onto a single 
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spindle with one actuator if you want multi-user access on the database that resides on it. 
But it does make sense to have a few TB on your desktop to use for streaming media and 
backing up your data. Both are highly sequential types of access, and definitely not multi-
user so they can be satisfied with a single, large disk.

Consider the following data points. In 1988, the typical hard disk was 20 MB, cost US$ 
1000.- transferred 0.5 MB/s and allowed about 20 random access operations per second. 
Twenty years later, in 2008, disks are ten times faster and ten times cheaper: 200 random 
access operations per second at around US$ 100.-. That sounds like a big improvement, but 
bandwidth has increased even more: 50 MB/s or 100 MB/s are easily reached; an improve-
ment by a factor of one or two hundred! But now take a deep breath and look at the size of 
the disk: Its capacity has increased from 20 MB to one TeraByte. That is a factor of 50,000 
(fifty-thousand)! That means that even though disk mechanics are now ten times faster 
than they used to be, a very large database based on modern disks is five thousand times 
slower (measured in accesses per second) than the same database based on old disks. It is 
also half a million times cheaper.

The point is that you must never base your volume or LUN requirements on size alone, 
but always mostly on the number of physical disks you need in order to handle the load. 
Size is irrelevant. Size is basically free. Disks cost money, but it's the physical disks heads 
that you need in order to perform actual work. Ignore your storage array sales representa-
tives when they talk about capacity in terms of size. They are fooling you. You get much 
more space per physical disk than you can put to reasonable use. The last type of disk that 
could efficiently handle enterprise database traffic was the 9 GB 10.000 RPM disk. Current 
disks only deliver about 1/100th the performance per GB as those 9 GB ones did.
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Non-quantitative graph showing how Moore's law only applies Figure 1-1:	
to disk capacity, while bandwidth and particularly operations 
per second are left behind. The X axis shows the years, while 
the Y axis shows the criterion that the curves are labelled with. 
Note that for the most importance today, namely TX/sec/GB, the 
capacity (which grows exponentially) is in the denominator, lead-
ing to exceedingly poor random read performance!
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Trying to Fix the Problems - and 1.1.3  Failing!

A number of approaches have been executed trying to get rid of or at least abate the 
problems caused by the mechanical heritage of physical hard disk drives. They have been 
successful in the past, sometimes yielding surprising performance benefits at their times 
and in their area of application. However, all the while  Moore's law has been stomping on 
and on, grinding away any improvement that even the smartest software engineers came 
up with.  Moore's law being exponential in nature has long since destroyed all attempts by 
storage providers to keep their disk drives' image as a fast, convenient and reliable storage 
medium. Let us have a look at the various attempts in a little more detail.

RAID Software
In order to alleviate the performance and reliability problems the  University of California in 
Berkeley in the 1980s developed a software solution that allowed to group disks together 
and distribute and/or multiplex I/Os across all members of the group. They called the soft-
ware  RAID, for Redundant Array of Inexpensive Disks. This was later changed to Redundant 
Array of Independent Disks by people who wanted to make money off the concept and did 
not like the term "Inexpensive".

RAID introduced the idea of inserting a virtual device called a "volume" between the 
application (usually a file system) and the physical disks, thus making it possible to circum-
vent the restrictions and limits of physical disks to a certain degree. There were different 
approaches to circumvent the various limitations, each with its own merits and drawbacks. 
They were called RAID levels. You have probably heard about RAID software and what it 
does, so this will only be a short introduction into the various RAID levels in use today. 

1)  RAID-0 concat concatenates disks so that when one disk fills up the next one in 
the chain is used. The capacity of the volume equals the sum of the capacities of 
the individual disks, and the disks can vary in size. Due to the way most modern file 
systems are organized, losing any one of the disks means that the volume is no longer 
usable although one may get lucky occasionally trying to restore that one important 
file before giving up the volume.

A RAID level 0 (concat) volume's block numbers are counted from Figure 1-2: 
beginning to end of the first disk, then skip to the next disk. In 
effect, storage on all disks is appended in a linear fashion. Disks 
of different sizes and types can be mixed freely.

2) RAID-0 stripe interleaves disks with what is called the striping factor,  stripe width or 
 stripe size. The volume's address space is logically chopped into extents the size of 

data
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the stripe width. These are then mapped to the individual columns of the stripe set, 
one column usually consisting of one disk. The first extent is mapped to the beginning 
of the first  column, the second extent to the beginning of the second column and so 
on, up to the number of columns in the stripe set. The next extents are then mapped 
behind the first extent on the first column, then the second, and so on. The size of 
the volume is equal to the size of the smallest disk multiplied by the number of disks 
in the stripe set.

A RAID level 0 (stripe) volume's block numbers are combined Figure 1-3: 
into chunks of blocks. The number of blocks in a chunk is called 
the stripe unit size, or stripe size. Each chunk maps to a disk 
linearly before mapping skips to the chunk in the next so-called 
"column". A column could be a single disk, a slice (or partition) 
of a disk, or any concatenation of such. All columns are neces-
sarily the same size. The disks underlying each column must be 
on separate physical spindles for performance reasons.

3)  RAID-1 mirror writes data to more than one disk. Each block is written to all disks in 
the mirror (usually two). Data that is flagged to be flushed to disk synchronously must 
be persistently written to all members of the mirror set before control is returned to 
the writing process, while normal, buffered I/O may leave the mirror in an inconsis-
tent state for a while. Note that this is not a problem because buffered I/O does 
not guarantee data persistence to the user anyway!

A RAID level 1 volume's blocks map to more than one disk. Writes Figure 1-4: 
are flushed to all members, while reads are generally read in a 
round-robin fashion for load balancing. Some low-end RAID 
solutions try to increase speed by issuing read requests to all 
members and only processing the first one. While that optimizes 
single-threaded performance, multi-threaded performance is 
lost because disk queues become longer and disks are overloaded 
with unnecessary redundant traffic.

data

data

data
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4)  RAID-4 parity maps extents in the same way that a normal stripe does. But RAID-4 
adds an extra column for a special checksum extents created by combining the val-
ues of all corresponding extents of the data columns using the lossless  exclusive-OR 
( XOR) operator. Thus, if any of the disks in the stripe set fails, the data for each extent 
can be recovered by reading the extents from all the remaining disks including the 
parity disk and recombining them with another exclusive-OR operation. Of course, 
these operations take time and there are many problems including write consistency 
and performance especially in degraded mode (when a disk has failed) or with multi-
user access. I will not go into great detail about the many performance penalties 
incurred when doing  RAID-4 in software. In short, doing it in hardware is OK, in 
software it is close to a nightmare.

A RAID level 4 volume's blocks map onto the backing store in Figure 1-5: 
the same way as a common RAID level 0 stripe, except that one 
column is excluded from data I/O. Instead, whenever a row of 
the stripe is changed, RAID-4's special write policy generates an 
extra block containing a checksum over all data blocks in that 
row, and writes it to the excluded column. The checksum is based 
on the lossless bitwise exclusive-OR (or XOR) operation the result 
of which is 0 if the sum of all input bits is even, and 1 if it is 
uneven. Therefore, the checksum is also called the parity.

5)  RAID-5 distributed parity is similar to RAID-4 but distributes the parity blocks 
across all columns thus improving RAID-4's performance problem when handling 
multi-threaded writes. Multi-threaded writes used to be one of the worst flaws of 
RAID-4 because they overloaded the dedicated parity-disk.

A RAID level 5 volume maps its blocks like a RAID level 4 volume, Figure 1-6: 
but parity distribution requires skipping parity blocks during 
reads and writes. The checksum itself is calculated in the same 
way as with RAID level 4. 

data xor
xor
xor

xor

data
xor

xor
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1.1.4	 SAN-Attached Hard Disks

In order to increase performance and manageability the second step the industry took was 
to introduce a fibre-channel based network for storage devices called a SAN (storage area 
network). Devices were thus accessible from more than one server and could be managed 
by programming the SAN switches accordingly. SANs introduced a whole set of problems 
into the administrator's world, many of which still are not solved. Attaching the disks to a 
SAN did not help the performance very much, although vendors like to boast about their 
multi-Gigabit/s connections. Unfortunately the speed of the channel is not the problem, as 
will become obvious later (beginning on page 214). But I have yet to meet a sales represen-
tative that is willing to understand the problem and advise the customers appropriately.

Initially SAN disks were packaged in boxes with little if any internal intelligence or 
caching, thus exposing the physical features of the disks to the outside (so called JBODs, for 
"Just a Bunch Of Disks"). The first devices of this sort used a rather broken transport pro-
tocol called FC-AL (for fibre-channel arbitrated loop) that was designed to make a cheap 
fibre connection to disks possible without having to buy expensive switches. FC-AL had 
and still has lots of problems and you do not want to use it except in very price-sensitive 
environments that do not require good resilience or performance. I.e. not in your typical 
data center.

1.1.5	 Storage Arrays and LUNs

The third step in the scramble to alleviate the problems introduced by the hard disk's 
mechanical legacy was to bundle groups of disks together into a chassis with relatively 
large amounts of battery–backed RAM. These assemblies are manufactured and sold by 
many vendors, e.g. HP, Hitachi, IBM, Sun microsystems, EMC and are called storage arrays, 
cache machines, SAN boxes or similar. Layout and feature set of all of these devices is 
similar: They consist of one or more chassis holding the disk units and a central control unit 
containing back-end controllers that connect to the disks, front-end controllers that con-
nect to the SAN. They may employ interconnects that connect to another box of the same 
vendor for remote replication or mirroring, and they usually have a large battery–backed 
RAM as a read– and write–buffer and lots of CPUs that control access from and to disks 
(back end) and hosts (front end). The disks are grouped into internal RAID groups of some 
sort (often some variant of RAID-4). In this step, care is usually taken to achieve a good 
load balance and throughput by applying knowledge about the internals of the storage 
array's architecture.

Now the RAID group, consisting of several multi-hundred GB disks, is usually much too 
large for a given problem so it is split into logical units (also called LUNs because they cor-
respond to the logical unit numbers in the SCSI addressing scheme). These LUNs are then 
mapped to the appropriate front-end controllers via which the host can access them as if 
they were physical hard disks. To the host computer, there is no obvious difference between 
a LUN and a physical hard disk.

Usually more than one path is provided by the storage array by mapping the same 
LUN to more than one front-end controller. The host runs some variant of multi-pathing 
software at the driver level to make use of this redundancy. The paths are either used one 
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at a time and only switched when a path fails. This is called an active-passive configura-
tion. Alternatively, the paths can be used in a round-robin manner for load balancing. This 
configuration is called active-active.

The storage arrays use advanced algorithms to do both read-ahead and write-behind 
caching, they allow LUNs of various sizes, remote copying, instant snapshots and a lot 
more. That is why storage array vendors often claim no software volume management is 
necessary if the customer uses their box.

However, as usual, things are much more complicated than what the sales reps say.
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A storage array's architecture in principle: Physical disks reside in Figure 1-7: 
trays, each of which is controlled by a back–end controller. Slices 
of these physical disks are combined via RAID logic and create a 
virtual object inside the storage array called a LUN (Logical Unit 
Number, from the SCSI addressing parlance). The LUN is mapped 
onto one or more front end controllers (or "service processors"), 
from which they can be accessed by the host machines. Each 
connection from a host to a LUN via a front end controller is 
called a path. If a host accesses the same LUN via more than one 
path then multipathing software is required in order to coordi-
nate access and to make use of the extra redundancy. The RAID 
level used inside the storage array is often a variant of RAID-5.
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What LUNs Can Do

-	 They can take lot of writes per second and acknowledge them to the host OS very 
rapidly, then flush them to disk asynchronously when load permits. This is possible 
because their RAM is battery–backed. As soon as the data is in the storage array's 
cache RAM, it can be considered safely written. In case of a power failure the array 
logic will use battery power to flush the data to the disk drives.

-	 They can deliver pretty high throughput in sequential I/O, both read and write, due 
to their smart read-ahead and write-behind caching.

-	 They can balance I/O automatically if you let them - they observe usage patterns and 
move data if necessary to enable more rapid access

-	 They can replicate data to a remote site, but this is only useful in special cases, like 
short distances or flat file systems.

What LUNs Cannot Do

-	 They cannot offer you the flexibility of storage objects that a software volume man-
agement offers. This is due to several reasons:

1)	 Most organizations will not allow a UNIX administrator to log into the storage 
array. Usually someone from the SAN group makes the storage objects (LUNs) for 
the UNIX admins and that's it.

2)	 The granularity of the storage array's external objects is, of course, the LUN. 
Freeing up bit of space from one volume by reducing its size, then moving the 
freed space to another volume works on the server, not in the storage array.

3)	 Backing up your volume configuration every night and being able to restore it on 
a per–volume basis and thus recover from all kinds of outages is easy in VxVM. I 
know of no way to do this in any storage array.

-	 They cannot increase scattered read (also known as random read) performance by 
giving you "cache hits". The myth about cache hits was introduced a long time ago, 
when storage arrays were sold mainly to the IBM mainframe market. It had some 
validity in those days but it does not any more. Unfortunately it has not disappeared 
since. The mainframes of that time used 31-bit addressing (yes, 31 is indeed a prime 
number. Remember we are talking about IBM mainframes here...). So all they could 
address directly was 2 GB of RAM. Storage arrays have been more free in implement-
ing their internals and they used block addressing, so they could address 32-bit times 
512 byte blocks. Having a lot of RAM in the mass storage system made some sense 
in those days, especially when the disks were smaller than they are now. Total RAM 
would be, say, 64 GB, and total disk capacity maybe one TB, which yielded about a 
6% cache rate (see picture). Together with the OS's limited address space there was 
actually a pretty good chance for cache hits, especially because the storage array 
was often dedicated to a single mainframe. Nowadays however servers use 64-bit 
addressing. They tend to have much more RAM than they used to, easily going into 
the hundreds of GBs. What's more, many servers usually share a single storage array. 
And the disks inside the storage array are much larger. All these factors together 
distort the magnitudes enough to make the cache completely irrelevant for scattered 
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reads. And even if we were lucky and the desired block actually was in the stor-
age array's cache, then it is almost guaranteed to be in the server's cache anyway. 
Because the amount of cache that the storage array allocates per server is usually 
much smaller than that server's file system buffer cache. So you can safely forget 
about speeding up random read access using storage arrays. The only thing the cache 
does effectively is read ahead and write behind and thus speed up sequential read 
and all write transfers.

While ten years ago storage arrays may have offered some cache Figure 1-8: 
hits due to the ratios of OS memory, number of machines per 
storage array, and cache/disk inside the storage array (left), 
today a cache hit for a scattered read is almost like winning the 
lottery (right).

- They cannot replicate online database traffic across great distances.  Replication 
means storing an consistent copy of the data in a remote location for disaster recov-
ery. It is different from a mirror in that updates to the replica may be delayed some-
what while updates to a mirror must not be. In addition, the replica is not accessible 
to the user at the remote site until - usually while testing or after a disaster - the 
direction of replication has been reversed. While some storage array vendors will 
claim that their hardware replicates databases quickly and consistently across great 
distances, this is not true. They may not know they are not telling the truth, but the 
simple fact is that physics makes it impossible. If you are interested in why  the speed 
of light is too slow, and why 4 GBit/second are not helpful when it comes to long 
distances, read the discussion about  light speed and protocols in the chapter about 
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dual data centers (page 214). The conclusion is that in order to replicate database 
traffic quickly and consistently the replicating agent needs information about the 
write sequence that only the operating system has. Therefore it is not possible to 
achieve this goal with a purely external solution but you need a special device driver. 
Veritas Volume Manager comes with a built-in solution for replication that is both 
fast and consistent. It is called VVR, or Veritas Volume Replicator. Unfortunately there 
is no free lunch and VxVM-based replication is not easy to learn or administer.

Common Problems1.1.6	

Scattered Read Latency
All the technological advances of the last thirty years have failed to fix one basic yet crucial 
problem: access to a random data block generally incurs a relatively long latency consisting 
of positioning the actuator and waiting for the right sector to fly by. In fact, the problem 
got worse and worse. It is still getting worse with every new generation of hard disks. You 
need to understand what exactly the problem is so that you can make smart decisions 
about the layout of your storage. Let us look at the problem, at how bad it already is and 
why it keeps getting worse.

When RAID was conceived the usual hard disks were a few dozen megabyte in size, 
let's say 20MB. A typical disk of that era had a rotational speed of 3600rpm, a data transfer 
rate of half an MB per second and an a seek time of about 60ms. It used an interleaving 
factor of 3 to 5 because the interface between disk controller and host computer could not 
transfer the data at the full speed of the rotating platter. so you had to read the same track 
several times in order to transfer all of it to or from the computer. Let's look at a sample 
data transfer from one of these disks:

1)	 Position the actuator - 35ms

2)	 Wait for head to settle down - 7ms

3)	 Wait for first sector under read/write head - 8ms

4)	 Read track four times to gather all the sectors, and transfer - 70ms

That's a total of 120ms. You could do eight of these large I/Os in a second, or twice as 
many if you only read one sector per I/O. Now what can we do today? In 2008 hard disks  
have much faster access times: a good average value is 6ms; ten times faster than in the 
days of the first RAID concepts. The also boast transfer speeds beyond 50MB/second, that 
is one hundred times the bandwidth we used to have. They also store one terabyte instead 
of 20MB. A database of 1GB that migrated from fifty old 20MB disks with their 60ms 
latency to fifty of today's 6ms hard disks would be ten times faster in random access, and 
a hundred times faster in sequential access! It could accommodate ten or twenty times 
more users than the old setup, depending on the I/O mix! It even turns out it would be 
about twenty times cheaper even with the same number of disks because hard disk prices 
have dropped a lot since the 1980s.

So what is the problem?
The problem is that, while access times have improved by a factor of ten, and band-
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width has improved by a factor of one hundred, size has increased by a factor of 50,000 
(fifty thousand, from 20MB to 1000 GB)! So nobody is going to put that 1GB database on 
fifty individual spindles because that would waste fifty terabyte minus 1 GB of hard disk 
space. Try explaining to procurement why you need 50 disks and only use 0.002% of their 
space. Well, let us be fair: you may not need the tenfold performance increase; you may just 
stick with the performance you used to have, so you can actually use ten times as much 
space: 0.02%! Try explaining that. Good luck!

The problem is that disks have so incredibly much space that you are tempted to use 
it, but because the mechanics basically haven't changed since 1980 you cannot use it for 
data that is accessed in a random fashion.

Yet people do it and that is what causes many of today's performance bottlenecks. 
How come most people do not recognize the problem? It is hard to say, but one thing is 
probably that benchmarking is often done the wrong way. Many times people benchmark 
only the "classic worst case" scenario, namely: scattered write I/O. This kind of I/O is the 
worst case for physical hard disks because not only does a write access incur the seek 
latency and write time, but the disk controller also has to verify that the data was properly 
written, which means that another revolution of the disk has to be waited for. A physical 
hard disk in a data center should never acknowledge a write I/O as soon as it has received 
the data from the host computer and put it into its cache (write back mode, the default on 
many personal computer systems). The data is only safe when it is actually persisted onto 
backing store, i.e. on its magnetic media, and that is when the I/O can be safely acknowl-
edged to the host (write through).

The second worst case is scattered read I/O, but why measure the second worst if you 
can measure the worst case, right? Wrong!

A storage array buffers all writes, both scattered and sequential, and acknowledge 
them to the host as soon as the data is in its cache. It does write back instead of write 
through, and in the case of the storage array, that is OK. Remember that the storage array 
has internal batteries that keep the array running in case of a power failure. Additionally, 
data in their cache is usually organized with enough metadata so that even when the 
storage array CPU fails it will replay the data from its cache onto the backing store when 
control is regained by the CPU.

So if scattered write performance is measured on LUNs the result is hugely distorted 
due to the storage array's caching effects. The write benchmark merely measures the speed 
of the channel and the controller, which is fair by itself because he storage array will actu-
ally deliver that performance in real life, too. But what people tend to forget is that what 
used to be the second worst case is now by far the worst case: scattered reads.

Another weak point in benchmarking today is that benchmarks (and optimization 
runs) are usually run on a single machine, while in fact the storage array is (or will be) 
connected to dozens if not hundreds of machines, each of which will put some load on the 
array. Because a combined benchmark is normally impossible due to logistical limitations 
(who could afford to shut down the whole data center just for benchmarking?) people limit 
themselves to benchmarking a single machine. But the results of such benchmarks are usu-
ally invalid because they do not replicate the real world in any significant way.
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Physical Disks vs. LUNs1.1.7	

Advantage LUN
Being the more recent and modern type of storage, LUNs have a number of advantages over 
physical disks. In particular there are the following advantages to LUNs:

-	 Write Performance: Storage arrays are at an the advantage when it comes to writ-
ing (both random and sequential) because of their write behind caching strategy. 
Because the storage array is built to survive power outages and other mishaps, a data 
block received from the host can be acknowledged as soon as it arrives at the storage 
array. There is no need to wait until the data has been persisted to magnetic storage. 
The storage array's cache memory is already persistent, and disks are just the backing 
store into which the cache contents are flushed for long-term storage. Because the 
storage array acknowledges received blocks immediately, the time waiting for the 
mechanical components of the disks is saved.

-	 Sequential Read Performance: Sequential (or "streaming") reads are also served 
very well by storage arrays because due to their vast caches they read ahead many 
more data blocks than an individual disk with its limited memory could. When the 
prefetched data is subsequently requested by the host the storage array can deliver 
it much more rapidly than a disk could. This is not because the storage array has 
more powerful CPUs. In fact, its I/O controllers are industry standard components. It 
is purely because the storage array has read so far ahead that no actual disk head 
movement needs to be done and thus the crucial bottleneck is mostly avoided when 
doing sequential I/O.

-	 Reliability: LUNs are almost always based on some kind of redundant internal 
construct. In many cases, some variant of RAID–5 is used. As a result, read/write 
errors from head crashes, power supply or even logic board failures on disk spindles, 
simply do not happen. LUNs are like disks that cannot break - unless the SAN admin 
inadvertently breaks them by misconfiguration. You may still lose part or all of your 
connectivity to the storage array, and you may still lose a LUN due to administrator 
error. But having defective sectors on a LUN is next to impossible.

-	 Management: Apart from performance and reliability they also have an advantage 
when it comes to (remote) management. Most large storage arrays include fibre-
channel switch hardware that is integrated with the array logic to facilitate easier 
zoning, masking and mapping of LUNs to hosts. While this could also be done using 
external SAN switches and fibre-channel JBODs it is generally easier to use the inte-
grated approach.

Advantage Disk
What, using physical disks has advantages over using LUNs? Yes, it does, and probably more 
than you would think possible:

-	 Lower latency: While writes and sequential reads are usually better served by a 
storage array, the additional overhead created by talking to the front-end controller 
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which puts the request into a queue from whence it is passed to the appropriate 
back-end controller which then talks to the disk, and the whole way back introduces 
significant extra latency. This aggravates the scattered read latency problem, which 
is already the ultimate bottleneck in today's storage systems.

-	 Transparency and Dedication: When you encounter a performance problem on a 
database the classical approach is to consult your sysadmin tools to find out which 
disk gets the most I/O and then balance it using the appropriate tools When you do 
this, then if you are running from physical hard disks you can be rather confident to 
get the expected result. But if you are running on a storage array chances are very 
high that you are not alone on the array, or on the physical spindles inside it. What 
appears to your sysadmin tools as a spindle is in fact a complicated construct com-
prised of several spindles, each of which may be part of more such constructs (see 
picture page 12). These are likely in use by some other machines in your data center 
that you may not even be aware of. It is a frequent complaint that storage arrays 
give relatively good average performance but can suffer unpredictable and severe 
performance degradations occasionally. This is often because some other machines 
peak at that time because they are doing disk-intensive tasks, like database imports, 
full table scans, export or backups, taking away all the IOPS (I/Os Per Second) which 
you thought were exclusively yours.

-	 Price: JBODs are typically much cheaper per GB than storage arrays. This is not only 
because JBODs need less components, but also because the target market for stor-
age arrays is mostly medium-sized to large enterprises who are expected to put their 
most mission-critical data onto storage arrays. Therefore, the array vendors must 
offer thorough, worldwide support on a 365/24 basis. They must also test their equip-
ment very thoroughly to exclude bugs as much as possible, and work together with 
server, HBA and SAN hardware makers on interoperability issues. All this consumes a 
lot of financial resources which must be recovered by the higher equipment price.

Other features like snapshots, redundancy etc. can all be done in software with physi-
cal hard disks and Volume Manager. There is just one special thing that cannot easily be 
done in software, and that is creating an incremental snapshot of a volume (a snapshot 
based on the differences from the original) and moving it to another host for offhost pro-
cessing. This is logically impossible for a host based approach because both hosts would 
need to have read and write access to the volume, and only one of them would maintain 
the snapshot. This would not work without a lock manager and a modified file system. 
Veritas has actually implemented that with a product called a "Volume Server" but that 
product is not widely used and it may never be.
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Disk addressing and layout1.2 

Blocks and  Extents
Every object that the host system sees as a disk, i.e. a LUN, a physical disk inside a JBOD, or 
a single disk (e.g. the boot disk) must be addressable in the same way or else there would 
be different code paths for different media types. Both developing and debugging for the 
programmer as well as administration and fault analysis for the administrator would be 
unnecessarily complicated by this. Fortunately, it is a universal truth that LUNs, JBODs and 
physical disks are indeed addressed in the same way and share the same layout.

As discussed before, disks are basically addressed as a one-dimensional address space 
segmented into blocks of  BLKSIZE bytes (usually 512, sometimes 1024). The tracks and cyl-
inders do not actually play a role any more except to shoot yourself in the foot if you mess 
them up. They are purely legacy information. In former times this information was used to 
optimize disk access, but it is irrelevant today. The SCSI device driver expects every hard 
disk to report them and so they diligently do, but the actual physical layout of the disk uses 
a variable amount of sectors per track (outside cylinders are longer so they can hold more 
sectors than inside cylinders), and the number of cylinders and even heads is emulated by 
the disk's firmware. Only when mirroring boot disks the cylinder information plays a little 
role, because the Solaris VTOC entries are required to start on cylinder boundaries.

In order to illustrate disk addressing we will use several variations of the following 
graphical element for the disk address space, in which each of the little rectangles stands 
for one disk block or sector:

A disk is addressed as a sequence of blocks or sectors of the Figure 1-9: 
same length, usually 512 bytes (1024 bytes on some HP-UX 
machines)

The next step up from disk blocks towards something more usable is the  extent. An 
extent is a data structure which is widely used in both Volume Manager and File System. 
Once you get used to extents you begin to wonder why everybody does not use them 
since they are such a useful abstraction. What is an extent? An extent is a contiguous 
range of blocks starting somewhere at a given block number and stretching over a number 
of blocks. Veritas File System uses only powers of two for extent sizes, but VxVM uses a 
less stringent definition of extent: an extent in VxVM is simply a sequence of disk blocks 
defined by a starting block and a number of blocks (or a beginning and a length, if you 
prefer that notion).
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A partition (another word for "slice") can also be seen as an extent. It starts at an offset 
(given as a block number) and extends across a number of disk blocks. An extent is anything 
that is given as an offset and a length. The disk itself is an extent, beginning at block zero 
and extending across the whole disk. A file could – almost – be an extent if the file system 
was smart enough to recognize what it is doing and allocate contiguous storage space. It 
is not really an extent, even if it is contiguously allocated, because it is not block-addressed 
but byte-addressed, i.e. it could end anywhere inside a disk block. By the way, VxFS actually 
does a very good job at allocating blocks contiguously, as does UFS, the common UNIX file 
system. Current implementations of UFS are derived from BSD's Fast File System (FFS); the 
original UFS from AT&T was very poor at allocating contiguously.

VTOC, Partition Table, Volume Label
At some fixed location on whatever the operating system identifies as a disk (i.e. a real 
hard disk or LUN) there needs to be some meta information that describes that medium. 
Such metadata include the length of the medium and the location of some critical extents 
like boot code or root file system etc. In principle it would be possible to derive much of 
the required metadata via I/O control system calls (ioctls) from the device driver (e.g. the 
length and blocksize of the device could be determined this way). However it makes a lot of 
sense to do this only once, then store the results along with other metadata in some fixed 
location on the device so it can be read and written without hassle.

In Solaris and several other operating systems, the extent that holds the metadata 
starts at block zero and has a length of one block. In other words, block number zero holds 
the metadata for the device. The Solaris name for the metadata extent is VTOC, which 
stands for Volume Table Of Contents. Other names from other operating system parlances 
are "partition table" or "volume label".

That metadata contains additional information about the usable extents residing on 
the medium. These extents are commonly known as "partitions" or "slices". They start at 
cylinder boundaries and are well enough integrated into the host system that they can be 
directly addressed, even before the boot process has started. For instance, a disk with a 
Solaris VTOC contains descriptions of eight extents. An extent of zero length that starts 
at offset zero is considered invalid (but still exists in the VTOC). Extent number two is by 
default initialized as an extent that contains the whole disk and is called the "backup 
slice". (A long time ago, when Moore's Law was not yet applicable to hard disks and you 
could actually buy the same type of hard disk for a few years, system administrators liked 
to make backups of their system disks by copying data from the "backup slice" onto tape. 
Note that the backup slice also contained the metadata extent (block zero) so when a disk 
was terminally broken one could install a new disk, copy the backup from tape to the new 
disk device's backup slice and thus recover both metadata (VTOC, slices, boot code) as well 
as user data of all file systems in one step. Hence the term "backup slice".)
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The Solaris VTOC (black) is located in a one-block extent starting Figure 1-10: 
at offset zero. It points to up to eight extents (on SPARC systems) 
which are also called slices or partitions. Slice 2 is an extent that 
covers the whole disk.

In Solaris, the extents known as slices or partitions carry a tag in the VTOC that is used 
to identify the partition's purpose. For instance, there is a special tag for the swap slice 
which is used by the Solaris installation program to find an extent into which a "mini-root" 
file system can be written without possibly overwriting important user data.

 Boot Code
The boot code, also called boot block, is (again, in Solaris systems) located in an extent that 
is 15 blocks in size and starts at an offset of 1 block from the root slice. Why is there an 
offset of 1 block? It is there simply in case the root slice starts at  cylinder zero of the disk. 
In that case, if the boot code actually started at block zero it would overwrite the VTOC 
(which is located at block zero of the disk) and render it useless. So to accommodate for 
this special case,  block zero of every extent on a Solaris disk is unused by any higher-level 
code.

The boot code contained in these fifteen blocks is smart enough to read UFS file system 
structures and load the kernel from its subdirectory path in e.g. /kernel/sparcv9/…. There 
will be more on booting and the boot process later in the discussion of making a third boot 
disk mirror for maintenance purposes.

The boot code (grey) on a Solaris disk resides in an extent that Figure 1-11: 
starts at offset one from any slice and is 15 blocks long. This 
slice is tagged as the boot or root slice, which contains the root 
file system.

Similar to the gap left for the  VTOC "just in case" the slice happens to start on cylinder 
zero of the disk there is another gap that the file system leaves for the boot code "just in 
case" it happens to be located on the root partition: The first sector, block zero, is skipped 
because we do not want to overwrite the VTOC. The following fifteen blocks, block 1-15, 
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are also skipped by the file system in order to prevent overwriting the boot block if this 
slice happens to be the root slice that contains the  boot code.

In summary, a Solaris slice or partition may start at any cylinder boundary but the file 
systems that reside in it will always skip the first 16 blocks "just in case" they happen to 
be on the root slice so they will not overwrite the  VTOC or  boot code. This is why the super 
block for a Solaris file system always resides at block 16 instead of block 0 of a slice. The 
same holds true even for database using raw devices: their access methods also skip the 
first 16 blocks for the same reason.

The superblock, the entry point for a file system, is contained Figure 1-12: 
in an extent that starts at offset 16 and has a length of one 
block.

 Slices or  Partitions
Slices, also called partitions, are container extents into which a file system or a database 
writes and from which it retrieves data that was previously written. They are discussed 
here because of the implications they have for volume management. A volume is, after all, 
a logical construct that ultimately serves as a backing store for a file system or a database 
raw device. To paraphrase: a volume is an extent that must act as an exact equivalent to 
a slice under all conditions. If a volume would behave in even a slightly different way from 
a partition the file system or database accessing the volume could run into situations it is 
not prepared for, and crash.

What is the most critical nature of a disk extent that must be emulated by its logical 
equivalent, the volume? Well, of course it must be able to store data in a persistent way. 
It must also adhere to exactly the same semantics on the driver level; the file system or 
data base driver must not be forced to use a different paradigm for accessing a volume 
than the one it uses for accessing a slice. The most crucial part is, however, that under all 
circumstances the virtual equivalent of a slice – the volume – must deliver one and only 
one set of data contents for any specific block until that block's contents are changed by 
that same device driver. It is not at all obvious that this is always the case. For instance, 
consider a volume that is a three-way mirror. If during an update to this mirror the host 
loses power, then because not all extents are written at exactly the same time you may 
have up to three different contents of any data block that was being written to when the 
outage occurred. Which one is "the right copy"? Should the write be transactional so that 
this cannot happen? Should we always refer to a "MASTER" copy, a preferred mirror side 
that is always up-to-date? Then what if the disk holding that mirror fails?

These questions will be answered beginning on page 132 and you will be surprised at 
how sophisticated the problem, yet how simple the solution is.
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Paths and 1.3	 path redundancy
A disk is not worth much if there is no way to access it. In order to access a disk there 
must be one or more I/O paths to it that the operating system can use. Over the course 
of time many types of paths have been developed. The ones most commonly used in data 
centers will be discussed here. They are: SCSI, fibre-channel (FC) and iSCSI. Two of these, 
FC and iSCSI, are network protocols, while SCSI is point-to-point and has been abandoned 
in most data centers by now. The SCSI protocol is still discussed here because its command 
set is the foundation for most  block-addressed storage today. The SCSI heritage turns out 
to become a big problem occasionally, as we will later see.

SCSI and SCSI Addressing
We will not go into the historical details about how Alan Shugart invented SCSI as a net-
work protocol for hard disk access. There are better sources for that kind of information. 
But it is important to know the naming conventions and some protocol intricacies in order 
to understand the later chapters, especially latency concerns and system deadlocks.

First of all SCSI is a stateful protocol that uses commands sent from the initiator (usu-
ally the host computer) to initiate data block transfers between the initiator and the target. 
A transaction consists roughly of the following steps (for a data read): first the initiator 
selects the target which the target acknowledges. The initiator then sends the command, 
e.g. a read command, which is again acknowledged. The target can then choose to decouple 
from the initiator and fetch the data. When the target has retrieved the data from its stor-
age medium it reconnects to the initiator who then fetches the data from the target and 
ultimately deselects the target.

How is the target addressed?
The target address used to be an integer number between 0-7, later 0-15, that was 

put onto the three (later four) address lines of the parallel SCSI interface. The operating 
systems had internal logic to translate names like /dev/sd4, /dev/sd5c etc. to the appro-
priate counterparts on the SCSI bus, in this case SCSI-ID 4 and SCSI-ID 5 slice 3 (the c in 
sd5c) etc. Later, when multi-instance devices appeared and systems with several control-
lers became more common this naming scheme became very inconvenient and had to be 
extended by what has become known as the LUN address.

The SCSI LUN

Imagine a device that houses more than one actual media. A good example is a CD-ROM 
changer. Such a device consists of just one controlling unit and therefor occupies just one 
SCSI target. But it is able to address more than one logical device, namely the individual 
CDs in the slots that the changer provides. In order to address such multi-instance devices 
an extension to the SCSI protocol was provided called a "Logical Unit Number". Does that 
sound familiar? It is the term we use when talking about virtual hard disks acquired from 
a storage array, the LUNs. Remember that storage arrays are multi-instance devices, too. 
They consist basically of a control unit with a mass-storage back end and can deliver mul-
tiple instances of block-addressed storage, so it makes sense to apply the same addressing 
scheme to them as with other multiple-instance devices. Initially there was a maximum of 
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16 LUNs due to limitations of the number of wires on the parallel SCSI bus. That limitation 
does not exist any more with serial interfaces (the limit was due to the number of address 
lines on the parallel SCSI cable) so it is up to the device driver how many LUNs it can 
address. Usually 256 LUNs per target is the limit.

Modern UNIX Device Naming Convention

Using names like /dev/sd4 or /dev/hdisk5 does not work very well when hundreds of disks 
need to be addressed. First of all it clutters the /dev directory. Then, all the names may 
change when a disk is added or removed and the system is reinitialized. That makes it very 
hard to keep the file system tree organized in a system with frequent device changes. So a 
more clever naming scheme was conceived, which identifies a device by the various entities 
on the path to that device: Controller or host-bus-adapter (HBA), Endpoint (Target), Disk 
(or LUN), and Slice. Typically, a path to a disk block device would be /dev/dsk/c#t#d#s#, 
with the # standing for the corresponding object number. The controller is the operating 
system's internal controller number that has been enumerated upon boot by the hardware 
integration layer. The endpoint or target number is the SCSI-ID in case of JBODs or – in 
case of a storage array – the fibre–channel port in the array to which the controller is con-
nected. The disk number is the port-specific number of the array-internal volume. Each port 
of a storage array gets a number of array–internal volumes (the "LUN" in the storage array 
picture on page 12) for each connecting host bus adapter. That internal number is passed 
on the SCSI bus to the host and turns into the disk number in the device tree.
To prevent clutter in the /dev directory, the device nodes are put into separate subdirec-
tories for block and raw addressing called /dev/dsk and /dev/rdsk. A device name like 
/dev/dsk/c4t9d2s0 identifies the block device for controller 4 -> target 9 -> disk 2 -> slice 
0, and /dev/rdsk/c8t15d7s2 identifies the raw device for the whole disk on controller 8 -> 
target 15 -> disk 7 (remember that slice 2 addresses the whole disk in Solaris).

When disks are added or removed on one controller or target, this does no longer 
change the names of all the other entities on different controllers or targets. This naming 
scheme is very convenient since it is immediately obvious which disks are connected to a 
certain controller (c4) or a certain storage array port (t9). There are other naming conven-
tions but they will not be used in this book.

Fibre-Channel
Fibre-channel is currently the most widely used interface for disks in data centers. 
Fortunately, switched fibre-channel fabrics have displaced the previous, rather unreliable 
and slow FC-AL (Fibre-Channel Arbitrated Loop) architectures. The physical layers of fibre-
channel are not too interesting in this context and are not covered in this book; there are 
many good books that explain FC very well (I very much recommend Tom Clark's "Designing 
Storage Area Networks"). But what you need to know are the following facts:

-	 Fibre-channel can use both copper or light as the physical transport medium. Copper 
is used for short distances only (usually inside the machine or array) while several 
variants of glass fibre are used for cheap medium-range connections (multi-mode) 
or more expensive long-range connections (mono-mode). It is quite common to mul-
tiplex several light connections onto a single physical channel to increase bandwidth 
without increasing cost at the same rate. This is done by a technique called [D]WDM 
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for [Dense] Wavelength Division Multiplexing. This type of multiplexing means no 
more than using lasers of different wavelengths (i.e. colors) in parallel on the same 
fibre.

-	 Fibre-channel uses a variant of the SCSI protocol command set called FC-3 (for Fibre-
Channel based on SCSI-3). In fact, the standard SCSI protocol driver is used on top of 
the FC host bus adapter (HBA) driver. This can cause great problems as you will see 
toward the end of this chapter.

-	 Fibre-Channel is a network architecture. It was originally designed to replace ether-
net for high-end applications but that failed due to the high cost of recabling, and 
because Ethernet developed very quickly to Gigabit versions. Fibre-Channel works 
with multiple initiators, multiple targets, switches and routers. It also has the usual 
set of network problems like missing or wrong routes, nodes that fail to answer or 
answer late, buffer overflows etc.

iSCSI
This protocol is gaining momentum because it allows to use a storage area network to be 
installed over an existing ethernet infrastructure. The expenses for fibre-channel compo-
nents are saved, and administration is simplified. Similar to FC, iSCSI uses the existing SCSI 
protocol driver on top of the TCP driver to directly address iSCSI devices as block devices. 
(This is in contrast to NFS where the server does not serve data blocks but file semantics. 
NFS and other file servers are outside the scope of this book.)

Multipathing
No matter which protocol is used it is always a good idea to have redundant paths to the 
disks. SCSI, Ethernet and FC connectors are not perfect and they can only withstand a very 
limited amount of force. In addition, especially in the case of network based storage it is 
always possible that an intermediate node loses power or crashes. If there was no path 
redundancy you would lose disk connectivity immediately and the data would no longer be 
accessible. If you were lucky, then you would lose only one side of each mirrored volume, 
but you would have to resynchronize all mirrored volumes after such an event. All this 
can be prevented by having redundant paths. But there are more reasons for having path 
redundancy:

-	 You can switch one of the paths off and upgrade the firmware on your HBA or on the 
storage array's controller to which this path is connected. After the upgrade is suc-
cessful, you switch the path back on and repeat the procedure with the other path. 
This enables online upgrades with no downtime.

-	 The load is distributed across more than one controller so that peak loads do not run 
into a bottleneck.

Multipathing drivers come in a variety of flavors. Some are provided by the operating sys-
tem vendor, like Sun microsystems' MPXIO driver. Others are provided by the storage ven-
dor, like EMC's PowerPath driver. And some come with the volume management software, 
like Veritas' Dynamic Multi Pathing (DMP). There are two places in the driver stack where 
they fit in: below the SCSI protocol driver or above it.
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Sun vHCI Driver

The vHCI (virtual Host Controller Interface) driver that implements Sun's MPXIO is an 
example for a nexus driver. A nexus driver is a driver that is part of a driver chain, i.e. one 
driver accessing or being accessed by another driver. In this case it operates between the 
SCSI protocol driver and the HBA (host bus adapter or pHCI, for physical Host Controller 
Interface) driver. The SCSI driver therefore only sees a single path which never seems to fail 
because the software driver below uses two or more redundant paths to do the I/O. That 
makes it easier for software that sits on top of the SCSI protocol because that software 
will rarely have to deal with path errors. It also makes it easier for system administrators 
to identify multipathed devices because each device only appears once in the device tree, 
only has one device node etc. More about the vHCI device driver can be found here: http://
www.patentstorm.us/patents/6904477-description.html and, of course, later in this book. 
Here is a somewhat simplistic graphical depiction of where the vHCI driver resides in the 
driver hierarchy of a system running Veritas Volume Manager:

vxio

vxdmp

Disk-HW

fc fc

sd

vHCI

The Sun vHCI driver is located below the sd driver. The operating Figure 1-13:	
system only offers the DMP driver a single path to each disk
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Veritas DMP Driver

The Veritas DMP driver is a layered driver that sits on top of the SCSI protocol and bundles 
several standard SCSI paths to one redundant path. The /dev directory keeps the device 
nodes for all SCSI devices after DMP is installed, but a /dev/dmp directory is added, which 
contains meta-nodes for devices accessed via the redundant paths. This has the advantage 
of making online installation and deinstallation of the driver possible because devices can 
still be accessed via their original device nodes. But this can be both positive and negative 
for the system administrator because common operating system commands and utilities 
continue to work on the original, individual paths, while Volume Manager and its tools use 
the redundant paths. For instance the Solaris format command may display two or four 
times as many disks as are actually connected to the system if they are connected via two 
controllers or two controllers and two switches, respectively. This can be confusing to the 
uninitiated. The following graphic illustrates where DMP resides:

vxio

vxdmp

Disk-HW

sd

fc fc

sd

The Veritas DMP driver is located above the sd driver. The operat-Figure 1-14:	
ing system offers the DMP driver several paths to each disk

How Does the DMP Driver Work?

This is obviously not a discussion of actual DMP implementation details, but one can get a 
good idea of how DMP works by using the following simplified description:

Whenever a device discovery is started (e.g. upon system boot or when the administra-
tor asks VxVM to scan for new disks) DMP reads the disk's unique ID (UID) from all devices 
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in /dev/rdsk/c*t*d*s2, i.e. from all disk devices that are known to the system (CD-ROMs 
etc. are skipped). It then builds a list of all UIDs and adds to each UID all paths via which 
that particular UID was found. This is called building the DMP device tree. The result of this 
is that each disk device is mapped to all paths that reach that particular device.

During operation  DMP issues I/Os for a certain UID in a round-robin fashion across all 
its paths. If a path encounters an error it is marked bad and henceforth skipped for I/Os. 
In order to regain that path when it comes back online a kernel thread called  restored 
reads the list of bad paths from the dmp driver at a configurable interval (default: 300 
seconds). It then issues a small read-I/O to test if the path has come back online. If it has, 
then that path is reactivated in DMP and taken off the bad path list and thus returns to 
normal operation.

Upon initialization, DMP reads all the SCSI disk device nodes and Figure 1-15: 
finds their universal ID. It maps all nodes that return the same 
UID to a logical device and gives it a unique "access name". 
Subsequently, accesses to that UID are routed over all available 
paths that originally returned the same UID. The standard sd 
driver remains functional, but is unaware of the fact that many 
of its paths are actually the same device.
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Paths and path redundancy

EMC Powerpath

Powerpath is a commercial product which is sold by EMC's strong sales force. It resides 
on the same layer as the dmp driver, i.e. on top of the sd driver. But it does something that 
should be considered at least problematic: Besides routing I/O to the powerpath drivers it 
also intercepts calls to the normal sd drivers underlying powerpath, and reroutes them via 
powerpath's internal logic to any of the paths via which the desired target can be reached. 
It therefore interferes with the operating system's own drivers as well as with other mul-
tipathing drivers.

Using Powerpath and DMP Together

Powerpath cannot be used in conjunction with DMP without a major hassle or risking data 
loss under certain circumstances. If a path fails, DMP and powerpath will not typically rec-
ognize the failure at the exact same point in time, so write I/Os that are pending via DMP 
may be rerouted via powerpath to a path that has already been found faulted by DMP, or 
vice versa. The result is that those I/Os may never be flushed to persistent storage and/or 
DMP may never find out about this and notify the vxio driver (which could then signal the 
application to retry the I/O). The result is occasional data loss in case of path failure.

Because powerpath does not seem to solve any problems that DMP hasn't solved we 
strongly advise against using them both at the same time. The illustration depicting the 
combination of DMP and powerpath hopefully speaks for itself:
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vxio

vxdmp

Disk-HW

sd

fc fc

sd

powerpath

original I/O

rerouted I/O

The EMC powerpath driver is located at the same level as the Figure 1-16:	
DMP driver. The operating system offers the DMP driver several 
paths to each disk, but usage of these paths is caught and redi-
rected by powerpath

The Trouble with Networked Disk Access1.4	

Process Sleep Behavior
Using networks as a transport medium for SCSI-addressed devices is - from a technical 
perspective - not a particularly good idea. The reason is a hierarchy of limitations and 
intricacies of the UNIX kernel, and of networked systems in general, which may cause 
disastrous results under some circumstances. The most common of these circumstances is 
an overloaded machine on a poorly performing SAN. Let us look at the individual points 
whose combination may cause a machine to hang or panic if you use a SAN:

The first problem is that the UNIX device driver model works in the following way 
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(roughly; the details are much more complicated):
A process that requests an input or output operation will go to sleep and will receive a 

wakeup call when the I/O request is ready to be served. For instance, a process that reads 
from a terminal, like an interactive UNIX shell or command interpreter, will go to sleep 
when the read system call is made. It will wake up when the user has completed his input 
by pressing the carriage return key or, if the process uses the terminal in raw mode in order 
to interpret the cursor and other special keys, upon any keypress. Since it is not clear when 
or if the user will actually create any input (he may have gone to lunch) the device driver 
sleeps in an interruptible way. That means that if the user decides to stop the program, 
leave the session, turn off his terminal etc., the process will be interrupted or terminated in 
a controlled way by the kernel jumping into the process' signal handler code, where excep-
tion processing can be handled by the user process. The drivers for devices that typically 
exhibit indefinite or at least long response times, and especially the application that use 
these drivers (in this case, anything that uses the terminal, like the shell etc.) take great 
care to avoid blocking system resources, i.e. they will typically not lock any data structures 
or allocate a lot of kernel memory and so on. After all, these valuable resources could be 
blocked for a long time.

Slow Devices vs. Fast Devices
Networks, too, are considered slow devices, just like terminals or serial lines. Due to the 
intricacies of network architectures, all sorts of delays are possible and must be reckoned 
with. Router reboots, slow or unresponsive nodes, network congestion and so on can all 
cause delays. This is represented by the typical timeout values for networks being in the 
minute range (usually between 1 and 10 minutes). Of course, network based device drivers 
and applications will use kernel resources sparingly and avoid locking any data structures 
while waiting for their data to arrive or their timeouts to occur.
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Drivers for devices which are known to exhibit potentially slow Figure 1-17: 
response times sleep interruptibly. They also typically do not 
require a lot of resources, and the applications that use them will 
not keep important data structures locked while they do I/O.

The opposite example is a SCSI disk driver. The classic  SCSI driver issues an I/O request 
to a disk that is attached via a parallel data cable to a hard disk drive. The driver expects 
the I/O to be served in a very short period of time, since the SCSI command and data 
exchange protocol is fairly quick. For that reason it need not be interruptible, which sim-
plifies the  context switch and thus improves performance. The device driver and especially 
the applications that use it – the file system or database – can also keep some  kernel  data 
structures or code regions  locked, or keep large buffers allocated – the I/O response  is due 
in very short order anyway, so there is no need to go through the trouble of making the 
system call interruptible.
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Drivers for devices which are considered to respond quickly will Figure 1-18: 
allocate resources much more aggressively, since the response is 
due in very short order anyway. The I/O is made uninterruptible 
for performance and other reasons.

The Problem of Mixing  Slow and Fast Devices
The problem of mixing fast and slow devices in the same nexus hierarchy is the following: 
Remember that the  SCSI protocol driver sits on top of the HBA driver, i.e. a device driver 
for a quick device calls the device driver for a networked, or very slow, device. What hap-
pens is that the  SCSI driver, depending on how well it is written and how much it sacrifices 
reliability to performance, might allocate or lock quite a lot of  kernel resources while it is 
doing its presumably quick I/O. But then it calls the networked device driver to actually 
serve the physical I/O. Everything works out if the device responds quickly, which it usu-
ally does, but if the  SAN infrastructure experiences problems because of congestion, not 
enough  buffer credits, network reconfiguration, slow disk response due to scattered read 
latency or otherwise (see page 4), all the resources allocated by either of the device drivers 
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will remain allocated for a long time. This is not a problem by itself, but if this happens on 
a heavily loaded database server that does massively parallelized I/O, the results may render 
the system unresponsive or even cause a  kernel panic.

Layered device drivers become a big problem if the upper layers Figure 1-19: 
expect a rapid response, but the lower layers do not deliver as 
rapidly. Locks, memory, and process contexts get stuck for an 
extended time, eventually leading to deadlock situations.
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Why Systems Hang – the Deadlock Situation
Because now another problem becomes visible: deadlock avoidance algorithms are not 
perfect. Deadlock avoidance belongs to a class of problems known to mathematicians and 
computer scientists as NP problems. NP is an abbreviation of non-polynomial [time] and 
refers to a complexity class whose problems cannot be solved in a time that is a mere 
polynomial function of the problem's complexity. What that means is that while a simple 
case of an NP problem could be solved relatively quickly, as the problem grows larger the 
time required to find the optimal solution grows at a much faster rate than the problem 
size. And very quickly the time becomes so long that the optimal solution to the problem 
cannot be guaranteed to be found any more in any reasonable time.

Travelling Salesman Problem

You may be familiar with one example of this class of problems, the travelling sales-
man problem. Imagine a salesman (and by this and all other similar occurrences of "man" 
in the text I mean "man" in the sense of "human"; please forgive me for sacrificing politi-
cal correctness for legibility) who needs to visit his clients at several places and is looking 
for the best route to visit them all. If there is just one client, the problem is easily solved: 
drive to the client, and drive back. If there are two clients the problem is still easy. With 
five clients, there may be several orders and routes that look good, and it will be quite 
hard to figure out which is the best one. But now imagine a thousand clients and the 
poor salesman needs to find the best route. The problem would likely be unsolvable in any 
reasonable time.

Finding a Practical Solution

On the other hand, exactly this problem - the problem of finding the best route 
through several points - is addressed very effectively on a daily basis by cheap electronic 
devices called GPS navigation systems. Is that not a contradiction? No, actually it is not. 
The solution that these devices offer is not generally optimal. It is merely very good and 
can therefore be calculated in a rather short time. So the programmers of navigation sys-
tem devices are trading off precision for speed. Finding the optimal route would still take 
forever, and that would not be useful. So they do try to approach the optimal solution but 
then stick with just a very good one to make it practically useful.

Deadlock Avoidance Problem

Operating systems programmers face the same dilemma when trying to avoid dead-
lock situations. If one process or kernel thread holds resource A locked and then requires 
resource B, but another process or thread holds resource B and needs resource A, they 
get into what is called a deadlock, i.e. they are both stuck until either one releases his 
lock to the other one. Of course, operating systems programmers have for decades been 
able to handle deadlocks by implementing deadlock avoidance strategies into their ker-
nels. But unfortunately, deadlock avoidance is also a member of the NP problem class. 
What that means is that while there are algorithms that work under all circumstances to 
resolve any deadlock situation, those algorithms my take literally forever and are therefore 
never implemented in any OS. As is the case with navigation systems however, there are 
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very practical algorithms that avoid deadlocks under almost all circumstances which are 
deemed reasonable and that have a very short runtime. Only the really pathological cases 
are not covered by these algorithms. This kind of algorithm is now found in all modern 
operating systems.

Identifying Pathological Cases

What are the pathological cases I mentioned? They are cases in which a large amount 
of processes or kernel threads exist, and many locks are held for a long time.

As the number of CPU cores per system grows and I/O parallelism especially in data-
bases increases in order to make use of these cores, the number of processes and threads 
that an operating system has to deal with threatens to grow out of bounds of what the 
practical deadlock avoidance algorithms can handle.

If in addition to the large number of threads that hold locks in an uninterruptible 
context, the underlying network does not function perfectly, then a deadlocked system 
becomes a very likely result. This was actually the reason for many of the outages that we 
analyzed during the past five years, and the frequency of such events seems to increase.

You need to be aware that large systems doing massively parallel I/O to a SAN will 
tend to deadlock when the SAN response time increases. The result will be an unresponsive 
system that will eventually either call a system panic and dump its core to the dump device, 
or one that will have to be manually revived by causing an NMI (non maskable interrupt) 
on the console and rebooting it.

Keep this in mind for later chapters, where we will deal with latency and the problem 
sets that arise from it. We will see that light speed is not fast enough in many common 
cases, which in the end leads to what looks like an unresponsive SAN. Under these circum-
stances systems will suffer similar deadlock crashes even if the SAN is actually in perfect 
working condition. This has indeed become a major problem in many data centers, because 
storage is typically bought by size rather than the more appropriate "transactions per sec-
ond per gigabyte" metric. Additionally, SANs are still considered to be very fast, and people 
tend to overload their machines.

More on this in the chapter on dual data centers, page 213.

Summary1.4.1	
This chapter provided an overview of disk hardware and its development through the last 
twenty or so years. It showed what Moore's Law is and how it makes the speedy hard disks 
of yesteryear turn into really slow devices if proper care is not taken to balance the amount 
of IOPS (I/Os per second) against the number of physical hard disk spindles available.  It 
introduces the most important, yet largely unknown, measure required for storage systems 
today: TX/sec/GB, or performance per gigabyte. Particular emphasis was put on the unsolv-
able problem of scattered reads, which cannot be tackled with any conventional approach 
no matter what the storage vendors may try to argue. The chapter also gave an overview 
of RAID software and RAID hardware-assisted systems, also known as "storage arrays", and 
where either storage arrays or disks have an advantage over the other.

In addition you got an insight into the basic data structure of "extent", into how 
addressing both logical and physical disk blocks work and how the data is laid out on a disk. 
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We further delved into the device drivers used to talk to disks, SAN basics and UNIX device 
driver specifics that may sound complicated but the knowledge of which is mandatory in 
order to understand and fix problems should they arise. You should now also be familiar 
with one of the main reasons for deadlocked systems and why these situations are almost 
inevitable unless your SAN is working perfectly – and sometimes even then.


