
1

Disk and Storage System Chapter 1:	
Basics
by Volker Herminghaus

Overview1.1	

Storage Hardware Situation and Outlook1.1.1	

Disk media are the entities that all persistent user data is eventually stored on. Because
the surface of a disk medium can be permanently magnetized, disks can store information
across reboots and power failures, when data residing in the computer's internal volatile
memory is lost. Disks can not be replaced by any amount of volatile memory. After all,
where would you put all that data after a shutdown? But a transition is slowly getting
under way: A few months before work on this book was begun, Apple Inc. released a
notebook computer that did not have a disk drive but used flash memory instead. EMC, a
vendor of mass storage systems, announced a storage array that used flash. These events
marked the beginning of a trend away from moving macroscopic mechanical spindles for
storing data - an incredibly arcane concept when compared to light-based fibre-channel
communications and memory cells holding only a few dozen electrons per bit.

However, flash is still much more expensive than disk storage, and even with prices
falling and some problematic properties of flash being alleviated, disk based storage sys-
tems will be here for a long time. They will eventually be found at the back end of the
storage chain, similar to tape reels in the times of the old mainframe computers. Disk

DOI: 10.1007/978-3-540-85023-6_1, © Springer-Verlag Berlin Heidelberg 2009

V. Herminghaus and A. Sriba, Storage Management in Data Centers,

2

Disk and Storage System Basics

storage will still need to be managed, and volume management software will still do that
job. Emphasis will likely be shifting from performance towards reliability, as more people
become aware of the fact that with the amount of data processed today, data errors will be
a frequent problem very soon. Error rates looked extremely low a few years ago, but when
multi-terabyte databases are processed at high speed around the clock, the seemingly low
probability for errors that slip through all error checking and prevention mechanisms soon
turns to certainty.

Rock Bottom Basics of Hard Disks
You probably know most of this already, but a little walk-through still makes sense because
a lot of the terminology introduced here will be used in later chapters. You can skip this if
you are very familiar with the interior of hard disks.

A hard disk consists of one or more flat, round platters covered with magnetic mate-
rial and fixed to a spindle rotating at around 5,000 to 15,000 rpm. At an extremely short
distance (about 20nm or 1/30th the wavelength of visible light!) above the platters there
are one or more arms ("actuators") moving perpendicular to the rotation if the disks. These
arms carry (usually) one tiny solenoid called the read/write head that serves two purposes:
When a current is sent through it, then it creates a magnetic field that permanently mag-
netizes the surface of the disk platter. This is called the write cycle. In the read cycle, no
current is sent to the solenoid and the magnetic field rushing along below it induces a tiny
current which is then caught by appropriate circuitry and ultimately converted to a binary
value, 0 or 1. This bit is shifted into a register while the next bit is read. When a full byte
is assembled, the byte is put into a buffer while the next byte is read and so on.

Current 1TB 3.25" disks have bit densities of more than 100 GBit per square inch.
Data on a disk is organized in blocks (also called sectors), and a sector or block is the

smallest addressable entity in disk input/output (or I/O). That means that a disk will always
transfer whole blocks to the host computer. The length of a block is usually 512 bytes,
although some disks use 1024 byte blocks. Each block is protected by a checksum that is
written behind its usable contents and is not accessible at the user level. Because of the
layout of the disk data hard disks are so-called "block addressed devices". I.e. it is not pos-
sible to directly change a certain byte or bit on a disk, but the whole sector must be read
from the host, modified, and written back. This alone makes access to a disk very different
from access to random access memory (RAM).

Furthermore disk data is organized into tracks (all sectors on a surface that are located
at the same distance from the center) and cylinders (the same track each across all plat-
ters). Fortunately, both of these can be considered irrelevant today; they are mere remnants
of past physical qualities and are merely emulated for backwards compatibility. A disk is
now simply a device that can read and write blocks of data, linearly addressed by the block
number.

From here on we will use the term "extent" to specify a stretch of magnetic storage
that starts at a certain block number and is a given number of blocks long. It is the most
convenient data structure when discussing block addressed devices.

3

Overview

Physical Limits1.1.2	

Whenever one has to deal with physical entities one has to deal with the limits of same.
In contrast to objects of the virtual world, physical objects are rigid, inflexible, error-prone
and generally undesirable. The purpose of a great amount of software in data centers is
mostly to replace all physical objects with virtual counterparts, which can then be used
instead of the physical entities. Physical disks are among the most limiting entities nowa-
days, because they are still dominated by mechanical access methods. This is extremely
arcane in comparison to almost all other computer system's components, which are based
on electrical or optical components.

Let us look at the limiting physical qualities of physical hard disks:

Performance

Imagine the mechanical overhead that a disk read or write incurs. First of all, the arm
assembly carrying the read/write heads has to be moved to the correct cylinder and the
correct read/write head is electronically selected. Moving the actuators takes several mil-
liseconds, roughly between 1ms for a close track to 10ms for one that is far away. Next,
it must settle on the track (i.e. stop vibrating from the sudden rapid movement). Then the
disk electronics must wait for the appropriate sector to actually fly by under the read/write
head. This takes, on average, half a disk rotation (the probability for the sector being "close"
vs. being "far" is 50%).

Very clever algorithms in the disk's on board controller, like tagged command queuing
and elevator sorting try to minimize the effects of the mechanical nature of the device,
but after all there remains an average latency of about 5 ms even for very good disks.
That means that on average, we can get no more than 200 independent operations per
second to or from a disk device. Also, just for comparison, or a bit of data travelling inside
a computer would have travelled 1000 km in the same time that the disk read/write moved
those 5 mm!

Reliability

If a hard disk fails your data is likely lost forever. Occasionally you may only have a faulty
on-board controller which you might replace but more likely the mechanical or magnetic
parts have suffered damage. Basically, if you are using hard disks without some kind of
redundancy layer on top of it, your only hope is a really good backup system.

Size and Performance per Size

Size is less of a problem now than it used to be, but no matter how many disks you have
attached to your system, storing a file that is larger than your disks will simply fail. Now of
course you can get Terabyte-sized hard disks, but they are still limited to around 200 I/Os
per second. It is hard to imagine a TB in an enterprise database idling around at no more
than 200 accesses per second While that sounds reasonable to the average home computer
user, data centers handle thousands of users per server concurrently. The real performance
measure we need is not size. It is not performance, as measured in transactions per second.
It is performance per size! How many transactions per second can be done per GB of data-

4

Disk and Storage System Basics

base, is the question. A TB of data is never just sitting around except maybe as a database
export file destined for a backup device. This kind of file is read and written sequentially
so there is less of a bottleneck. But for general-purpose, especially for database volumes,
the most important question is how many TX/s/GB can the volume deliver to the database.
Due to the exponential increase in hard disk size, the ratio of performance per GigaByte
has dropped to abysmal levels in recent years.

Flexibility

To put it shortly: disks are not flexible. You cannot change their size nor their speed nor
their reliability. The only flexible thing about hard disks is the wire that attaches it to the
computer.

Manageability

Managing a disk that is directly attached to a server means physically going there and
plugging or unplugging it from the server or power supply. No remote management is
usually possible.

Moore's Law and the Problem with Mechanics
Hard disks became anachronistic in the 1980's when computers started outpacing disks
by a bigger margin every year. Unfortunately they are still anachronistic today and we are
stuck with them. A well-known fact known as "Moore's law" states that the density of
microelectronics doubles every 18 months (or gains a factor of ten every five years). This
is basically true for hard disks as well. However, while in computers denser structures on
chips increase their processing speed, for disks the increasing density led merely to three
things:

1)	 Increased processing speed in the on board controller of the disk (which never was
much of a problem anyway)

2)	 Increased speed of sequential read/write operations because more data is packed
onto each track and is read in the same revolution. This is an advantage only in large
sequential transfers, which are not typical for data center usage (databases)

3)	 Increased capacity of the disk, meaning more accesses per second are directed to the
same hard disk

What Moore's law of exponential growth did not help was the rotational speed of the
platters, which is limited by the centrifugal force exerted on the platters, and the speed at
which the read/write heads are moved by the actuator. The latter is limited by the amount
of heat that is generated and must be dissipated from the device. There were efforts to put
several actuators into the same housing as well as several read-write heads per platter onto
each actuator but for various reasons they all failed in the long run. So in the end Moore's
law ran away generating gigantic amounts of storage space, bandwidth and processing
power while leaving the hard disks' transactions per second sadly behind, forever tied to
their mechanical internals. That is still the situation we are facing today.

It is also the reason why hard disks destined for private or SOHO use are usually larger
than "server-grade" disks. It just does not make a bit of sense putting 1 TB onto a single

5

Overview

spindle with one actuator if you want multi-user access on the database that resides on it.
But it does make sense to have a few TB on your desktop to use for streaming media and
backing up your data. Both are highly sequential types of access, and definitely not multi-
user so they can be satisfied with a single, large disk.

Consider the following data points. In 1988, the typical hard disk was 20 MB, cost US$
1000.- transferred 0.5 MB/s and allowed about 20 random access operations per second.
Twenty years later, in 2008, disks are ten times faster and ten times cheaper: 200 random
access operations per second at around US$ 100.-. That sounds like a big improvement, but
bandwidth has increased even more: 50 MB/s or 100 MB/s are easily reached; an improve-
ment by a factor of one or two hundred! But now take a deep breath and look at the size of
the disk: Its capacity has increased from 20 MB to one TeraByte. That is a factor of 50,000
(fifty-thousand)! That means that even though disk mechanics are now ten times faster
than they used to be, a very large database based on modern disks is five thousand times
slower (measured in accesses per second) than the same database based on old disks. It is
also half a million times cheaper.

The point is that you must never base your volume or LUN requirements on size alone,
but always mostly on the number of physical disks you need in order to handle the load.
Size is irrelevant. Size is basically free. Disks cost money, but it's the physical disks heads
that you need in order to perform actual work. Ignore your storage array sales representa-
tives when they talk about capacity in terms of size. They are fooling you. You get much
more space per physical disk than you can put to reasonable use. The last type of disk that
could efficiently handle enterprise database traffic was the 9 GB 10.000 RPM disk. Current
disks only deliver about 1/100th the performance per GB as those 9 GB ones did.

6

Disk and Storage System Basics

C
a
p
a
c
it

y

Read/write
 sp

eed

Operations per second

Non-quantitative graph showing how Moore's law only applies Figure 1-1:	
to disk capacity, while bandwidth and particularly operations
per second are left behind. The X axis shows the years, while
the Y axis shows the criterion that the curves are labelled with.
Note that for the most importance today, namely TX/sec/GB, the
capacity (which grows exponentially) is in the denominator, lead-
ing to exceedingly poor random read performance!

7

Overview

Trying to Fix the Problems - and 1.1.3 Failing!

A number of approaches have been executed trying to get rid of or at least abate the
problems caused by the mechanical heritage of physical hard disk drives. They have been
successful in the past, sometimes yielding surprising performance benefits at their times
and in their area of application. However, all the while Moore's law has been stomping on
and on, grinding away any improvement that even the smartest software engineers came
up with. Moore's law being exponential in nature has long since destroyed all attempts by
storage providers to keep their disk drives' image as a fast, convenient and reliable storage
medium. Let us have a look at the various attempts in a little more detail.

RAID Software
In order to alleviate the performance and reliability problems the University of California in
Berkeley in the 1980s developed a software solution that allowed to group disks together
and distribute and/or multiplex I/Os across all members of the group. They called the soft-
ware RAID, for Redundant Array of Inexpensive Disks. This was later changed to Redundant
Array of Independent Disks by people who wanted to make money off the concept and did
not like the term "Inexpensive".

RAID introduced the idea of inserting a virtual device called a "volume" between the
application (usually a file system) and the physical disks, thus making it possible to circum-
vent the restrictions and limits of physical disks to a certain degree. There were different
approaches to circumvent the various limitations, each with its own merits and drawbacks.
They were called RAID levels. You have probably heard about RAID software and what it
does, so this will only be a short introduction into the various RAID levels in use today.

1) RAID-0 concat concatenates disks so that when one disk fills up the next one in
the chain is used. The capacity of the volume equals the sum of the capacities of
the individual disks, and the disks can vary in size. Due to the way most modern file
systems are organized, losing any one of the disks means that the volume is no longer
usable although one may get lucky occasionally trying to restore that one important
file before giving up the volume.

A RAID level 0 (concat) volume's block numbers are counted from Figure 1-2:
beginning to end of the first disk, then skip to the next disk. In
effect, storage on all disks is appended in a linear fashion. Disks
of different sizes and types can be mixed freely.

2) RAID-0 stripe interleaves disks with what is called the striping factor, stripe width or
 stripe size. The volume's address space is logically chopped into extents the size of

data

8

Disk and Storage System Basics

the stripe width. These are then mapped to the individual columns of the stripe set,
one column usually consisting of one disk. The first extent is mapped to the beginning
of the first column, the second extent to the beginning of the second column and so
on, up to the number of columns in the stripe set. The next extents are then mapped
behind the first extent on the first column, then the second, and so on. The size of
the volume is equal to the size of the smallest disk multiplied by the number of disks
in the stripe set.

A RAID level 0 (stripe) volume's block numbers are combined Figure 1-3:
into chunks of blocks. The number of blocks in a chunk is called
the stripe unit size, or stripe size. Each chunk maps to a disk
linearly before mapping skips to the chunk in the next so-called
"column". A column could be a single disk, a slice (or partition)
of a disk, or any concatenation of such. All columns are neces-
sarily the same size. The disks underlying each column must be
on separate physical spindles for performance reasons.

3) RAID-1 mirror writes data to more than one disk. Each block is written to all disks in
the mirror (usually two). Data that is flagged to be flushed to disk synchronously must
be persistently written to all members of the mirror set before control is returned to
the writing process, while normal, buffered I/O may leave the mirror in an inconsis-
tent state for a while. Note that this is not a problem because buffered I/O does
not guarantee data persistence to the user anyway!

A RAID level 1 volume's blocks map to more than one disk. Writes Figure 1-4:
are flushed to all members, while reads are generally read in a
round-robin fashion for load balancing. Some low-end RAID
solutions try to increase speed by issuing read requests to all
members and only processing the first one. While that optimizes
single-threaded performance, multi-threaded performance is
lost because disk queues become longer and disks are overloaded
with unnecessary redundant traffic.

data

data

data

9

Overview

4) RAID-4 parity maps extents in the same way that a normal stripe does. But RAID-4
adds an extra column for a special checksum extents created by combining the val-
ues of all corresponding extents of the data columns using the lossless exclusive-OR
(XOR) operator. Thus, if any of the disks in the stripe set fails, the data for each extent
can be recovered by reading the extents from all the remaining disks including the
parity disk and recombining them with another exclusive-OR operation. Of course,
these operations take time and there are many problems including write consistency
and performance especially in degraded mode (when a disk has failed) or with multi-
user access. I will not go into great detail about the many performance penalties
incurred when doing RAID-4 in software. In short, doing it in hardware is OK, in
software it is close to a nightmare.

A RAID level 4 volume's blocks map onto the backing store in Figure 1-5:
the same way as a common RAID level 0 stripe, except that one
column is excluded from data I/O. Instead, whenever a row of
the stripe is changed, RAID-4's special write policy generates an
extra block containing a checksum over all data blocks in that
row, and writes it to the excluded column. The checksum is based
on the lossless bitwise exclusive-OR (or XOR) operation the result
of which is 0 if the sum of all input bits is even, and 1 if it is
uneven. Therefore, the checksum is also called the parity.

5) RAID-5 distributed parity is similar to RAID-4 but distributes the parity blocks
across all columns thus improving RAID-4's performance problem when handling
multi-threaded writes. Multi-threaded writes used to be one of the worst flaws of
RAID-4 because they overloaded the dedicated parity-disk.

A RAID level 5 volume maps its blocks like a RAID level 4 volume, Figure 1-6:
but parity distribution requires skipping parity blocks during
reads and writes. The checksum itself is calculated in the same
way as with RAID level 4.

data xor
xor
xor

xor

data
xor

xor

10

Disk and Storage System Basics

1.1.4	 SAN-Attached Hard Disks

In order to increase performance and manageability the second step the industry took was
to introduce a fibre-channel based network for storage devices called a SAN (storage area
network). Devices were thus accessible from more than one server and could be managed
by programming the SAN switches accordingly. SANs introduced a whole set of problems
into the administrator's world, many of which still are not solved. Attaching the disks to a
SAN did not help the performance very much, although vendors like to boast about their
multi-Gigabit/s connections. Unfortunately the speed of the channel is not the problem, as
will become obvious later (beginning on page 214). But I have yet to meet a sales represen-
tative that is willing to understand the problem and advise the customers appropriately.

Initially SAN disks were packaged in boxes with little if any internal intelligence or
caching, thus exposing the physical features of the disks to the outside (so called JBODs, for
"Just a Bunch Of Disks"). The first devices of this sort used a rather broken transport pro-
tocol called FC-AL (for fibre-channel arbitrated loop) that was designed to make a cheap
fibre connection to disks possible without having to buy expensive switches. FC-AL had
and still has lots of problems and you do not want to use it except in very price-sensitive
environments that do not require good resilience or performance. I.e. not in your typical
data center.

1.1.5	 Storage Arrays and LUNs

The third step in the scramble to alleviate the problems introduced by the hard disk's
mechanical legacy was to bundle groups of disks together into a chassis with relatively
large amounts of battery–backed RAM. These assemblies are manufactured and sold by
many vendors, e.g. HP, Hitachi, IBM, Sun microsystems, EMC and are called storage arrays,
cache machines, SAN boxes or similar. Layout and feature set of all of these devices is
similar: They consist of one or more chassis holding the disk units and a central control unit
containing back-end controllers that connect to the disks, front-end controllers that con-
nect to the SAN. They may employ interconnects that connect to another box of the same
vendor for remote replication or mirroring, and they usually have a large battery–backed
RAM as a read– and write–buffer and lots of CPUs that control access from and to disks
(back end) and hosts (front end). The disks are grouped into internal RAID groups of some
sort (often some variant of RAID-4). In this step, care is usually taken to achieve a good
load balance and throughput by applying knowledge about the internals of the storage
array's architecture.

Now the RAID group, consisting of several multi-hundred GB disks, is usually much too
large for a given problem so it is split into logical units (also called LUNs because they cor-
respond to the logical unit numbers in the SCSI addressing scheme). These LUNs are then
mapped to the appropriate front-end controllers via which the host can access them as if
they were physical hard disks. To the host computer, there is no obvious difference between
a LUN and a physical hard disk.

Usually more than one path is provided by the storage array by mapping the same
LUN to more than one front-end controller. The host runs some variant of multi-pathing
software at the driver level to make use of this redundancy. The paths are either used one

11

Overview

at a time and only switched when a path fails. This is called an active-passive configura-
tion. Alternatively, the paths can be used in a round-robin manner for load balancing. This
configuration is called active-active.

The storage arrays use advanced algorithms to do both read-ahead and write-behind
caching, they allow LUNs of various sizes, remote copying, instant snapshots and a lot
more. That is why storage array vendors often claim no software volume management is
necessary if the customer uses their box.

However, as usual, things are much more complicated than what the sales reps say.

12

Disk and Storage System Basics

A storage array's architecture in principle: Physical disks reside in Figure 1-7:
trays, each of which is controlled by a back–end controller. Slices
of these physical disks are combined via RAID logic and create a
virtual object inside the storage array called a LUN (Logical Unit
Number, from the SCSI addressing parlance). The LUN is mapped
onto one or more front end controllers (or "service processors"),
from which they can be accessed by the host machines. Each
connection from a host to a LUN via a front end controller is
called a path. If a host accesses the same LUN via more than one
path then multipathing software is required in order to coordi-
nate access and to make use of the extra redundancy. The RAID
level used inside the storage array is often a variant of RAID-5.

13

Overview

What LUNs Can Do

-	 They can take lot of writes per second and acknowledge them to the host OS very
rapidly, then flush them to disk asynchronously when load permits. This is possible
because their RAM is battery–backed. As soon as the data is in the storage array's
cache RAM, it can be considered safely written. In case of a power failure the array
logic will use battery power to flush the data to the disk drives.

-	 They can deliver pretty high throughput in sequential I/O, both read and write, due
to their smart read-ahead and write-behind caching.

-	 They can balance I/O automatically if you let them - they observe usage patterns and
move data if necessary to enable more rapid access

-	 They can replicate data to a remote site, but this is only useful in special cases, like
short distances or flat file systems.

What LUNs Cannot Do

-	 They cannot offer you the flexibility of storage objects that a software volume man-
agement offers. This is due to several reasons:

1)	 Most organizations will not allow a UNIX administrator to log into the storage
array. Usually someone from the SAN group makes the storage objects (LUNs) for
the UNIX admins and that's it.

2)	 The granularity of the storage array's external objects is, of course, the LUN.
Freeing up bit of space from one volume by reducing its size, then moving the
freed space to another volume works on the server, not in the storage array.

3)	 Backing up your volume configuration every night and being able to restore it on
a per–volume basis and thus recover from all kinds of outages is easy in VxVM. I
know of no way to do this in any storage array.

-	 They cannot increase scattered read (also known as random read) performance by
giving you "cache hits". The myth about cache hits was introduced a long time ago,
when storage arrays were sold mainly to the IBM mainframe market. It had some
validity in those days but it does not any more. Unfortunately it has not disappeared
since. The mainframes of that time used 31-bit addressing (yes, 31 is indeed a prime
number. Remember we are talking about IBM mainframes here...). So all they could
address directly was 2 GB of RAM. Storage arrays have been more free in implement-
ing their internals and they used block addressing, so they could address 32-bit times
512 byte blocks. Having a lot of RAM in the mass storage system made some sense
in those days, especially when the disks were smaller than they are now. Total RAM
would be, say, 64 GB, and total disk capacity maybe one TB, which yielded about a
6% cache rate (see picture). Together with the OS's limited address space there was
actually a pretty good chance for cache hits, especially because the storage array
was often dedicated to a single mainframe. Nowadays however servers use 64-bit
addressing. They tend to have much more RAM than they used to, easily going into
the hundreds of GBs. What's more, many servers usually share a single storage array.
And the disks inside the storage array are much larger. All these factors together
distort the magnitudes enough to make the cache completely irrelevant for scattered

14

Disk and Storage System Basics

reads. And even if we were lucky and the desired block actually was in the stor-
age array's cache, then it is almost guaranteed to be in the server's cache anyway.
Because the amount of cache that the storage array allocates per server is usually
much smaller than that server's file system buffer cache. So you can safely forget
about speeding up random read access using storage arrays. The only thing the cache
does effectively is read ahead and write behind and thus speed up sequential read
and all write transfers.

While ten years ago storage arrays may have offered some cache Figure 1-8:
hits due to the ratios of OS memory, number of machines per
storage array, and cache/disk inside the storage array (left),
today a cache hit for a scattered read is almost like winning the
lottery (right).

- They cannot replicate online database traffic across great distances. Replication
means storing an consistent copy of the data in a remote location for disaster recov-
ery. It is different from a mirror in that updates to the replica may be delayed some-
what while updates to a mirror must not be. In addition, the replica is not accessible
to the user at the remote site until - usually while testing or after a disaster - the
direction of replication has been reversed. While some storage array vendors will
claim that their hardware replicates databases quickly and consistently across great
distances, this is not true. They may not know they are not telling the truth, but the
simple fact is that physics makes it impossible. If you are interested in why the speed
of light is too slow, and why 4 GBit/second are not helpful when it comes to long
distances, read the discussion about light speed and protocols in the chapter about

15

Overview

dual data centers (page 214). The conclusion is that in order to replicate database
traffic quickly and consistently the replicating agent needs information about the
write sequence that only the operating system has. Therefore it is not possible to
achieve this goal with a purely external solution but you need a special device driver.
Veritas Volume Manager comes with a built-in solution for replication that is both
fast and consistent. It is called VVR, or Veritas Volume Replicator. Unfortunately there
is no free lunch and VxVM-based replication is not easy to learn or administer.

Common Problems1.1.6	

Scattered Read Latency
All the technological advances of the last thirty years have failed to fix one basic yet crucial
problem: access to a random data block generally incurs a relatively long latency consisting
of positioning the actuator and waiting for the right sector to fly by. In fact, the problem
got worse and worse. It is still getting worse with every new generation of hard disks. You
need to understand what exactly the problem is so that you can make smart decisions
about the layout of your storage. Let us look at the problem, at how bad it already is and
why it keeps getting worse.

When RAID was conceived the usual hard disks were a few dozen megabyte in size,
let's say 20MB. A typical disk of that era had a rotational speed of 3600rpm, a data transfer
rate of half an MB per second and an a seek time of about 60ms. It used an interleaving
factor of 3 to 5 because the interface between disk controller and host computer could not
transfer the data at the full speed of the rotating platter. so you had to read the same track
several times in order to transfer all of it to or from the computer. Let's look at a sample
data transfer from one of these disks:

1)	 Position the actuator - 35ms

2)	 Wait for head to settle down - 7ms

3)	 Wait for first sector under read/write head - 8ms

4)	 Read track four times to gather all the sectors, and transfer - 70ms

That's a total of 120ms. You could do eight of these large I/Os in a second, or twice as
many if you only read one sector per I/O. Now what can we do today? In 2008 hard disks
have much faster access times: a good average value is 6ms; ten times faster than in the
days of the first RAID concepts. The also boast transfer speeds beyond 50MB/second, that
is one hundred times the bandwidth we used to have. They also store one terabyte instead
of 20MB. A database of 1GB that migrated from fifty old 20MB disks with their 60ms
latency to fifty of today's 6ms hard disks would be ten times faster in random access, and
a hundred times faster in sequential access! It could accommodate ten or twenty times
more users than the old setup, depending on the I/O mix! It even turns out it would be
about twenty times cheaper even with the same number of disks because hard disk prices
have dropped a lot since the 1980s.

So what is the problem?
The problem is that, while access times have improved by a factor of ten, and band-

16

Disk and Storage System Basics

width has improved by a factor of one hundred, size has increased by a factor of 50,000
(fifty thousand, from 20MB to 1000 GB)! So nobody is going to put that 1GB database on
fifty individual spindles because that would waste fifty terabyte minus 1 GB of hard disk
space. Try explaining to procurement why you need 50 disks and only use 0.002% of their
space. Well, let us be fair: you may not need the tenfold performance increase; you may just
stick with the performance you used to have, so you can actually use ten times as much
space: 0.02%! Try explaining that. Good luck!

The problem is that disks have so incredibly much space that you are tempted to use
it, but because the mechanics basically haven't changed since 1980 you cannot use it for
data that is accessed in a random fashion.

Yet people do it and that is what causes many of today's performance bottlenecks.
How come most people do not recognize the problem? It is hard to say, but one thing is
probably that benchmarking is often done the wrong way. Many times people benchmark
only the "classic worst case" scenario, namely: scattered write I/O. This kind of I/O is the
worst case for physical hard disks because not only does a write access incur the seek
latency and write time, but the disk controller also has to verify that the data was properly
written, which means that another revolution of the disk has to be waited for. A physical
hard disk in a data center should never acknowledge a write I/O as soon as it has received
the data from the host computer and put it into its cache (write back mode, the default on
many personal computer systems). The data is only safe when it is actually persisted onto
backing store, i.e. on its magnetic media, and that is when the I/O can be safely acknowl-
edged to the host (write through).

The second worst case is scattered read I/O, but why measure the second worst if you
can measure the worst case, right? Wrong!

A storage array buffers all writes, both scattered and sequential, and acknowledge
them to the host as soon as the data is in its cache. It does write back instead of write
through, and in the case of the storage array, that is OK. Remember that the storage array
has internal batteries that keep the array running in case of a power failure. Additionally,
data in their cache is usually organized with enough metadata so that even when the
storage array CPU fails it will replay the data from its cache onto the backing store when
control is regained by the CPU.

So if scattered write performance is measured on LUNs the result is hugely distorted
due to the storage array's caching effects. The write benchmark merely measures the speed
of the channel and the controller, which is fair by itself because he storage array will actu-
ally deliver that performance in real life, too. But what people tend to forget is that what
used to be the second worst case is now by far the worst case: scattered reads.

Another weak point in benchmarking today is that benchmarks (and optimization
runs) are usually run on a single machine, while in fact the storage array is (or will be)
connected to dozens if not hundreds of machines, each of which will put some load on the
array. Because a combined benchmark is normally impossible due to logistical limitations
(who could afford to shut down the whole data center just for benchmarking?) people limit
themselves to benchmarking a single machine. But the results of such benchmarks are usu-
ally invalid because they do not replicate the real world in any significant way.

17

Overview

Physical Disks vs. LUNs1.1.7	

Advantage LUN
Being the more recent and modern type of storage, LUNs have a number of advantages over
physical disks. In particular there are the following advantages to LUNs:

-	 Write Performance: Storage arrays are at an the advantage when it comes to writ-
ing (both random and sequential) because of their write behind caching strategy.
Because the storage array is built to survive power outages and other mishaps, a data
block received from the host can be acknowledged as soon as it arrives at the storage
array. There is no need to wait until the data has been persisted to magnetic storage.
The storage array's cache memory is already persistent, and disks are just the backing
store into which the cache contents are flushed for long-term storage. Because the
storage array acknowledges received blocks immediately, the time waiting for the
mechanical components of the disks is saved.

-	 Sequential Read Performance: Sequential (or "streaming") reads are also served
very well by storage arrays because due to their vast caches they read ahead many
more data blocks than an individual disk with its limited memory could. When the
prefetched data is subsequently requested by the host the storage array can deliver
it much more rapidly than a disk could. This is not because the storage array has
more powerful CPUs. In fact, its I/O controllers are industry standard components. It
is purely because the storage array has read so far ahead that no actual disk head
movement needs to be done and thus the crucial bottleneck is mostly avoided when
doing sequential I/O.

-	 Reliability: LUNs are almost always based on some kind of redundant internal
construct. In many cases, some variant of RAID–5 is used. As a result, read/write
errors from head crashes, power supply or even logic board failures on disk spindles,
simply do not happen. LUNs are like disks that cannot break - unless the SAN admin
inadvertently breaks them by misconfiguration. You may still lose part or all of your
connectivity to the storage array, and you may still lose a LUN due to administrator
error. But having defective sectors on a LUN is next to impossible.

-	 Management: Apart from performance and reliability they also have an advantage
when it comes to (remote) management. Most large storage arrays include fibre-
channel switch hardware that is integrated with the array logic to facilitate easier
zoning, masking and mapping of LUNs to hosts. While this could also be done using
external SAN switches and fibre-channel JBODs it is generally easier to use the inte-
grated approach.

Advantage Disk
What, using physical disks has advantages over using LUNs? Yes, it does, and probably more
than you would think possible:

-	 Lower latency: While writes and sequential reads are usually better served by a
storage array, the additional overhead created by talking to the front-end controller

18

Disk and Storage System Basics

which puts the request into a queue from whence it is passed to the appropriate
back-end controller which then talks to the disk, and the whole way back introduces
significant extra latency. This aggravates the scattered read latency problem, which
is already the ultimate bottleneck in today's storage systems.

-	 Transparency and Dedication: When you encounter a performance problem on a
database the classical approach is to consult your sysadmin tools to find out which
disk gets the most I/O and then balance it using the appropriate tools When you do
this, then if you are running from physical hard disks you can be rather confident to
get the expected result. But if you are running on a storage array chances are very
high that you are not alone on the array, or on the physical spindles inside it. What
appears to your sysadmin tools as a spindle is in fact a complicated construct com-
prised of several spindles, each of which may be part of more such constructs (see
picture page 12). These are likely in use by some other machines in your data center
that you may not even be aware of. It is a frequent complaint that storage arrays
give relatively good average performance but can suffer unpredictable and severe
performance degradations occasionally. This is often because some other machines
peak at that time because they are doing disk-intensive tasks, like database imports,
full table scans, export or backups, taking away all the IOPS (I/Os Per Second) which
you thought were exclusively yours.

-	 Price: JBODs are typically much cheaper per GB than storage arrays. This is not only
because JBODs need less components, but also because the target market for stor-
age arrays is mostly medium-sized to large enterprises who are expected to put their
most mission-critical data onto storage arrays. Therefore, the array vendors must
offer thorough, worldwide support on a 365/24 basis. They must also test their equip-
ment very thoroughly to exclude bugs as much as possible, and work together with
server, HBA and SAN hardware makers on interoperability issues. All this consumes a
lot of financial resources which must be recovered by the higher equipment price.

Other features like snapshots, redundancy etc. can all be done in software with physi-
cal hard disks and Volume Manager. There is just one special thing that cannot easily be
done in software, and that is creating an incremental snapshot of a volume (a snapshot
based on the differences from the original) and moving it to another host for offhost pro-
cessing. This is logically impossible for a host based approach because both hosts would
need to have read and write access to the volume, and only one of them would maintain
the snapshot. This would not work without a lock manager and a modified file system.
Veritas has actually implemented that with a product called a "Volume Server" but that
product is not widely used and it may never be.

19

Disk Addressing and Layout

Disk addressing and layout1.2

Blocks and Extents
Every object that the host system sees as a disk, i.e. a LUN, a physical disk inside a JBOD, or
a single disk (e.g. the boot disk) must be addressable in the same way or else there would
be different code paths for different media types. Both developing and debugging for the
programmer as well as administration and fault analysis for the administrator would be
unnecessarily complicated by this. Fortunately, it is a universal truth that LUNs, JBODs and
physical disks are indeed addressed in the same way and share the same layout.

As discussed before, disks are basically addressed as a one-dimensional address space
segmented into blocks of BLKSIZE bytes (usually 512, sometimes 1024). The tracks and cyl-
inders do not actually play a role any more except to shoot yourself in the foot if you mess
them up. They are purely legacy information. In former times this information was used to
optimize disk access, but it is irrelevant today. The SCSI device driver expects every hard
disk to report them and so they diligently do, but the actual physical layout of the disk uses
a variable amount of sectors per track (outside cylinders are longer so they can hold more
sectors than inside cylinders), and the number of cylinders and even heads is emulated by
the disk's firmware. Only when mirroring boot disks the cylinder information plays a little
role, because the Solaris VTOC entries are required to start on cylinder boundaries.

In order to illustrate disk addressing we will use several variations of the following
graphical element for the disk address space, in which each of the little rectangles stands
for one disk block or sector:

A disk is addressed as a sequence of blocks or sectors of the Figure 1-9:
same length, usually 512 bytes (1024 bytes on some HP-UX
machines)

The next step up from disk blocks towards something more usable is the extent. An
extent is a data structure which is widely used in both Volume Manager and File System.
Once you get used to extents you begin to wonder why everybody does not use them
since they are such a useful abstraction. What is an extent? An extent is a contiguous
range of blocks starting somewhere at a given block number and stretching over a number
of blocks. Veritas File System uses only powers of two for extent sizes, but VxVM uses a
less stringent definition of extent: an extent in VxVM is simply a sequence of disk blocks
defined by a starting block and a number of blocks (or a beginning and a length, if you
prefer that notion).

20

Disk and Storage System Basics

A partition (another word for "slice") can also be seen as an extent. It starts at an offset
(given as a block number) and extends across a number of disk blocks. An extent is anything
that is given as an offset and a length. The disk itself is an extent, beginning at block zero
and extending across the whole disk. A file could – almost – be an extent if the file system
was smart enough to recognize what it is doing and allocate contiguous storage space. It
is not really an extent, even if it is contiguously allocated, because it is not block-addressed
but byte-addressed, i.e. it could end anywhere inside a disk block. By the way, VxFS actually
does a very good job at allocating blocks contiguously, as does UFS, the common UNIX file
system. Current implementations of UFS are derived from BSD's Fast File System (FFS); the
original UFS from AT&T was very poor at allocating contiguously.

VTOC, Partition Table, Volume Label
At some fixed location on whatever the operating system identifies as a disk (i.e. a real
hard disk or LUN) there needs to be some meta information that describes that medium.
Such metadata include the length of the medium and the location of some critical extents
like boot code or root file system etc. In principle it would be possible to derive much of
the required metadata via I/O control system calls (ioctls) from the device driver (e.g. the
length and blocksize of the device could be determined this way). However it makes a lot of
sense to do this only once, then store the results along with other metadata in some fixed
location on the device so it can be read and written without hassle.

In Solaris and several other operating systems, the extent that holds the metadata
starts at block zero and has a length of one block. In other words, block number zero holds
the metadata for the device. The Solaris name for the metadata extent is VTOC, which
stands for Volume Table Of Contents. Other names from other operating system parlances
are "partition table" or "volume label".

That metadata contains additional information about the usable extents residing on
the medium. These extents are commonly known as "partitions" or "slices". They start at
cylinder boundaries and are well enough integrated into the host system that they can be
directly addressed, even before the boot process has started. For instance, a disk with a
Solaris VTOC contains descriptions of eight extents. An extent of zero length that starts
at offset zero is considered invalid (but still exists in the VTOC). Extent number two is by
default initialized as an extent that contains the whole disk and is called the "backup
slice". (A long time ago, when Moore's Law was not yet applicable to hard disks and you
could actually buy the same type of hard disk for a few years, system administrators liked
to make backups of their system disks by copying data from the "backup slice" onto tape.
Note that the backup slice also contained the metadata extent (block zero) so when a disk
was terminally broken one could install a new disk, copy the backup from tape to the new
disk device's backup slice and thus recover both metadata (VTOC, slices, boot code) as well
as user data of all file systems in one step. Hence the term "backup slice".)

21

Disk Addressing and Layout

The Solaris VTOC (black) is located in a one-block extent starting Figure 1-10:
at offset zero. It points to up to eight extents (on SPARC systems)
which are also called slices or partitions. Slice 2 is an extent that
covers the whole disk.

In Solaris, the extents known as slices or partitions carry a tag in the VTOC that is used
to identify the partition's purpose. For instance, there is a special tag for the swap slice
which is used by the Solaris installation program to find an extent into which a "mini-root"
file system can be written without possibly overwriting important user data.

 Boot Code
The boot code, also called boot block, is (again, in Solaris systems) located in an extent that
is 15 blocks in size and starts at an offset of 1 block from the root slice. Why is there an
offset of 1 block? It is there simply in case the root slice starts at cylinder zero of the disk.
In that case, if the boot code actually started at block zero it would overwrite the VTOC
(which is located at block zero of the disk) and render it useless. So to accommodate for
this special case, block zero of every extent on a Solaris disk is unused by any higher-level
code.

The boot code contained in these fifteen blocks is smart enough to read UFS file system
structures and load the kernel from its subdirectory path in e.g. /kernel/sparcv9/…. There
will be more on booting and the boot process later in the discussion of making a third boot
disk mirror for maintenance purposes.

The boot code (grey) on a Solaris disk resides in an extent that Figure 1-11:
starts at offset one from any slice and is 15 blocks long. This
slice is tagged as the boot or root slice, which contains the root
file system.

Similar to the gap left for the VTOC "just in case" the slice happens to start on cylinder
zero of the disk there is another gap that the file system leaves for the boot code "just in
case" it happens to be located on the root partition: The first sector, block zero, is skipped
because we do not want to overwrite the VTOC. The following fifteen blocks, block 1-15,

22

Disk and Storage System Basics

are also skipped by the file system in order to prevent overwriting the boot block if this
slice happens to be the root slice that contains the boot code.

In summary, a Solaris slice or partition may start at any cylinder boundary but the file
systems that reside in it will always skip the first 16 blocks "just in case" they happen to
be on the root slice so they will not overwrite the VTOC or boot code. This is why the super
block for a Solaris file system always resides at block 16 instead of block 0 of a slice. The
same holds true even for database using raw devices: their access methods also skip the
first 16 blocks for the same reason.

The superblock, the entry point for a file system, is contained Figure 1-12:
in an extent that starts at offset 16 and has a length of one
block.

 Slices or Partitions
Slices, also called partitions, are container extents into which a file system or a database
writes and from which it retrieves data that was previously written. They are discussed
here because of the implications they have for volume management. A volume is, after all,
a logical construct that ultimately serves as a backing store for a file system or a database
raw device. To paraphrase: a volume is an extent that must act as an exact equivalent to
a slice under all conditions. If a volume would behave in even a slightly different way from
a partition the file system or database accessing the volume could run into situations it is
not prepared for, and crash.

What is the most critical nature of a disk extent that must be emulated by its logical
equivalent, the volume? Well, of course it must be able to store data in a persistent way.
It must also adhere to exactly the same semantics on the driver level; the file system or
data base driver must not be forced to use a different paradigm for accessing a volume
than the one it uses for accessing a slice. The most crucial part is, however, that under all
circumstances the virtual equivalent of a slice – the volume – must deliver one and only
one set of data contents for any specific block until that block's contents are changed by
that same device driver. It is not at all obvious that this is always the case. For instance,
consider a volume that is a three-way mirror. If during an update to this mirror the host
loses power, then because not all extents are written at exactly the same time you may
have up to three different contents of any data block that was being written to when the
outage occurred. Which one is "the right copy"? Should the write be transactional so that
this cannot happen? Should we always refer to a "MASTER" copy, a preferred mirror side
that is always up-to-date? Then what if the disk holding that mirror fails?

These questions will be answered beginning on page 132 and you will be surprised at
how sophisticated the problem, yet how simple the solution is.

23

Paths and path redundancy

Paths and 1.3	 path redundancy
A disk is not worth much if there is no way to access it. In order to access a disk there
must be one or more I/O paths to it that the operating system can use. Over the course
of time many types of paths have been developed. The ones most commonly used in data
centers will be discussed here. They are: SCSI, fibre-channel (FC) and iSCSI. Two of these,
FC and iSCSI, are network protocols, while SCSI is point-to-point and has been abandoned
in most data centers by now. The SCSI protocol is still discussed here because its command
set is the foundation for most block-addressed storage today. The SCSI heritage turns out
to become a big problem occasionally, as we will later see.

SCSI and SCSI Addressing
We will not go into the historical details about how Alan Shugart invented SCSI as a net-
work protocol for hard disk access. There are better sources for that kind of information.
But it is important to know the naming conventions and some protocol intricacies in order
to understand the later chapters, especially latency concerns and system deadlocks.

First of all SCSI is a stateful protocol that uses commands sent from the initiator (usu-
ally the host computer) to initiate data block transfers between the initiator and the target.
A transaction consists roughly of the following steps (for a data read): first the initiator
selects the target which the target acknowledges. The initiator then sends the command,
e.g. a read command, which is again acknowledged. The target can then choose to decouple
from the initiator and fetch the data. When the target has retrieved the data from its stor-
age medium it reconnects to the initiator who then fetches the data from the target and
ultimately deselects the target.

How is the target addressed?
The target address used to be an integer number between 0-7, later 0-15, that was

put onto the three (later four) address lines of the parallel SCSI interface. The operating
systems had internal logic to translate names like /dev/sd4, /dev/sd5c etc. to the appro-
priate counterparts on the SCSI bus, in this case SCSI-ID 4 and SCSI-ID 5 slice 3 (the c in
sd5c) etc. Later, when multi-instance devices appeared and systems with several control-
lers became more common this naming scheme became very inconvenient and had to be
extended by what has become known as the LUN address.

The SCSI LUN

Imagine a device that houses more than one actual media. A good example is a CD-ROM
changer. Such a device consists of just one controlling unit and therefor occupies just one
SCSI target. But it is able to address more than one logical device, namely the individual
CDs in the slots that the changer provides. In order to address such multi-instance devices
an extension to the SCSI protocol was provided called a "Logical Unit Number". Does that
sound familiar? It is the term we use when talking about virtual hard disks acquired from
a storage array, the LUNs. Remember that storage arrays are multi-instance devices, too.
They consist basically of a control unit with a mass-storage back end and can deliver mul-
tiple instances of block-addressed storage, so it makes sense to apply the same addressing
scheme to them as with other multiple-instance devices. Initially there was a maximum of

24

Disk and Storage System Basics

16 LUNs due to limitations of the number of wires on the parallel SCSI bus. That limitation
does not exist any more with serial interfaces (the limit was due to the number of address
lines on the parallel SCSI cable) so it is up to the device driver how many LUNs it can
address. Usually 256 LUNs per target is the limit.

Modern UNIX Device Naming Convention

Using names like /dev/sd4 or /dev/hdisk5 does not work very well when hundreds of disks
need to be addressed. First of all it clutters the /dev directory. Then, all the names may
change when a disk is added or removed and the system is reinitialized. That makes it very
hard to keep the file system tree organized in a system with frequent device changes. So a
more clever naming scheme was conceived, which identifies a device by the various entities
on the path to that device: Controller or host-bus-adapter (HBA), Endpoint (Target), Disk
(or LUN), and Slice. Typically, a path to a disk block device would be /dev/dsk/c#t#d#s#,
with the # standing for the corresponding object number. The controller is the operating
system's internal controller number that has been enumerated upon boot by the hardware
integration layer. The endpoint or target number is the SCSI-ID in case of JBODs or – in
case of a storage array – the fibre–channel port in the array to which the controller is con-
nected. The disk number is the port-specific number of the array-internal volume. Each port
of a storage array gets a number of array–internal volumes (the "LUN" in the storage array
picture on page 12) for each connecting host bus adapter. That internal number is passed
on the SCSI bus to the host and turns into the disk number in the device tree.
To prevent clutter in the /dev directory, the device nodes are put into separate subdirec-
tories for block and raw addressing called /dev/dsk and /dev/rdsk. A device name like
/dev/dsk/c4t9d2s0 identifies the block device for controller 4 -> target 9 -> disk 2 -> slice
0, and /dev/rdsk/c8t15d7s2 identifies the raw device for the whole disk on controller 8 ->
target 15 -> disk 7 (remember that slice 2 addresses the whole disk in Solaris).

When disks are added or removed on one controller or target, this does no longer
change the names of all the other entities on different controllers or targets. This naming
scheme is very convenient since it is immediately obvious which disks are connected to a
certain controller (c4) or a certain storage array port (t9). There are other naming conven-
tions but they will not be used in this book.

Fibre-Channel
Fibre-channel is currently the most widely used interface for disks in data centers.
Fortunately, switched fibre-channel fabrics have displaced the previous, rather unreliable
and slow FC-AL (Fibre-Channel Arbitrated Loop) architectures. The physical layers of fibre-
channel are not too interesting in this context and are not covered in this book; there are
many good books that explain FC very well (I very much recommend Tom Clark's "Designing
Storage Area Networks"). But what you need to know are the following facts:

-	 Fibre-channel can use both copper or light as the physical transport medium. Copper
is used for short distances only (usually inside the machine or array) while several
variants of glass fibre are used for cheap medium-range connections (multi-mode)
or more expensive long-range connections (mono-mode). It is quite common to mul-
tiplex several light connections onto a single physical channel to increase bandwidth
without increasing cost at the same rate. This is done by a technique called [D]WDM

25

Paths and path redundancy

for [Dense] Wavelength Division Multiplexing. This type of multiplexing means no
more than using lasers of different wavelengths (i.e. colors) in parallel on the same
fibre.

-	 Fibre-channel uses a variant of the SCSI protocol command set called FC-3 (for Fibre-
Channel based on SCSI-3). In fact, the standard SCSI protocol driver is used on top of
the FC host bus adapter (HBA) driver. This can cause great problems as you will see
toward the end of this chapter.

-	 Fibre-Channel is a network architecture. It was originally designed to replace ether-
net for high-end applications but that failed due to the high cost of recabling, and
because Ethernet developed very quickly to Gigabit versions. Fibre-Channel works
with multiple initiators, multiple targets, switches and routers. It also has the usual
set of network problems like missing or wrong routes, nodes that fail to answer or
answer late, buffer overflows etc.

iSCSI
This protocol is gaining momentum because it allows to use a storage area network to be
installed over an existing ethernet infrastructure. The expenses for fibre-channel compo-
nents are saved, and administration is simplified. Similar to FC, iSCSI uses the existing SCSI
protocol driver on top of the TCP driver to directly address iSCSI devices as block devices.
(This is in contrast to NFS where the server does not serve data blocks but file semantics.
NFS and other file servers are outside the scope of this book.)

Multipathing
No matter which protocol is used it is always a good idea to have redundant paths to the
disks. SCSI, Ethernet and FC connectors are not perfect and they can only withstand a very
limited amount of force. In addition, especially in the case of network based storage it is
always possible that an intermediate node loses power or crashes. If there was no path
redundancy you would lose disk connectivity immediately and the data would no longer be
accessible. If you were lucky, then you would lose only one side of each mirrored volume,
but you would have to resynchronize all mirrored volumes after such an event. All this
can be prevented by having redundant paths. But there are more reasons for having path
redundancy:

-	 You can switch one of the paths off and upgrade the firmware on your HBA or on the
storage array's controller to which this path is connected. After the upgrade is suc-
cessful, you switch the path back on and repeat the procedure with the other path.
This enables online upgrades with no downtime.

-	 The load is distributed across more than one controller so that peak loads do not run
into a bottleneck.

Multipathing drivers come in a variety of flavors. Some are provided by the operating sys-
tem vendor, like Sun microsystems' MPXIO driver. Others are provided by the storage ven-
dor, like EMC's PowerPath driver. And some come with the volume management software,
like Veritas' Dynamic Multi Pathing (DMP). There are two places in the driver stack where
they fit in: below the SCSI protocol driver or above it.

26

Disk and Storage System Basics

Sun vHCI Driver

The vHCI (virtual Host Controller Interface) driver that implements Sun's MPXIO is an
example for a nexus driver. A nexus driver is a driver that is part of a driver chain, i.e. one
driver accessing or being accessed by another driver. In this case it operates between the
SCSI protocol driver and the HBA (host bus adapter or pHCI, for physical Host Controller
Interface) driver. The SCSI driver therefore only sees a single path which never seems to fail
because the software driver below uses two or more redundant paths to do the I/O. That
makes it easier for software that sits on top of the SCSI protocol because that software
will rarely have to deal with path errors. It also makes it easier for system administrators
to identify multipathed devices because each device only appears once in the device tree,
only has one device node etc. More about the vHCI device driver can be found here: http://
www.patentstorm.us/patents/6904477-description.html and, of course, later in this book.
Here is a somewhat simplistic graphical depiction of where the vHCI driver resides in the
driver hierarchy of a system running Veritas Volume Manager:

vxio

vxdmp

Disk-HW

fc fc

sd

vHCI

The Sun vHCI driver is located below the sd driver. The operating Figure 1-13:	
system only offers the DMP driver a single path to each disk

27

Paths and path redundancy

Veritas DMP Driver

The Veritas DMP driver is a layered driver that sits on top of the SCSI protocol and bundles
several standard SCSI paths to one redundant path. The /dev directory keeps the device
nodes for all SCSI devices after DMP is installed, but a /dev/dmp directory is added, which
contains meta-nodes for devices accessed via the redundant paths. This has the advantage
of making online installation and deinstallation of the driver possible because devices can
still be accessed via their original device nodes. But this can be both positive and negative
for the system administrator because common operating system commands and utilities
continue to work on the original, individual paths, while Volume Manager and its tools use
the redundant paths. For instance the Solaris format command may display two or four
times as many disks as are actually connected to the system if they are connected via two
controllers or two controllers and two switches, respectively. This can be confusing to the
uninitiated. The following graphic illustrates where DMP resides:

vxio

vxdmp

Disk-HW

sd

fc fc

sd

The Veritas DMP driver is located above the sd driver. The operat-Figure 1-14:	
ing system offers the DMP driver several paths to each disk

How Does the DMP Driver Work?

This is obviously not a discussion of actual DMP implementation details, but one can get a
good idea of how DMP works by using the following simplified description:

Whenever a device discovery is started (e.g. upon system boot or when the administra-
tor asks VxVM to scan for new disks) DMP reads the disk's unique ID (UID) from all devices

28

Disk and Storage System Basics

in /dev/rdsk/c*t*d*s2, i.e. from all disk devices that are known to the system (CD-ROMs
etc. are skipped). It then builds a list of all UIDs and adds to each UID all paths via which
that particular UID was found. This is called building the DMP device tree. The result of this
is that each disk device is mapped to all paths that reach that particular device.

During operation DMP issues I/Os for a certain UID in a round-robin fashion across all
its paths. If a path encounters an error it is marked bad and henceforth skipped for I/Os.
In order to regain that path when it comes back online a kernel thread called restored
reads the list of bad paths from the dmp driver at a configurable interval (default: 300
seconds). It then issues a small read-I/O to test if the path has come back online. If it has,
then that path is reactivated in DMP and taken off the bad path list and thus returns to
normal operation.

Upon initialization, DMP reads all the SCSI disk device nodes and Figure 1-15:
finds their universal ID. It maps all nodes that return the same
UID to a logical device and gives it a unique "access name".
Subsequently, accesses to that UID are routed over all available
paths that originally returned the same UID. The standard sd
driver remains functional, but is unaware of the fact that many
of its paths are actually the same device.

c4t9d6s2

c5t2d3s2

c6t3d2s2

sd driver paths

c4t9d7s2

c5t2d4s2

c6t3d3s2

UID 6C13

UID 4AFE

c4t9d8s2

c5t2d5s2

c6t3d4s2

vxio driver

"c4t9d6"

dmp driver paths
actual disks or

LUNs

"c4t9d7"

"c4t9d8"

UID 6047

29

Paths and path redundancy

EMC Powerpath

Powerpath is a commercial product which is sold by EMC's strong sales force. It resides
on the same layer as the dmp driver, i.e. on top of the sd driver. But it does something that
should be considered at least problematic: Besides routing I/O to the powerpath drivers it
also intercepts calls to the normal sd drivers underlying powerpath, and reroutes them via
powerpath's internal logic to any of the paths via which the desired target can be reached.
It therefore interferes with the operating system's own drivers as well as with other mul-
tipathing drivers.

Using Powerpath and DMP Together

Powerpath cannot be used in conjunction with DMP without a major hassle or risking data
loss under certain circumstances. If a path fails, DMP and powerpath will not typically rec-
ognize the failure at the exact same point in time, so write I/Os that are pending via DMP
may be rerouted via powerpath to a path that has already been found faulted by DMP, or
vice versa. The result is that those I/Os may never be flushed to persistent storage and/or
DMP may never find out about this and notify the vxio driver (which could then signal the
application to retry the I/O). The result is occasional data loss in case of path failure.

Because powerpath does not seem to solve any problems that DMP hasn't solved we
strongly advise against using them both at the same time. The illustration depicting the
combination of DMP and powerpath hopefully speaks for itself:

30

Disk and Storage System Basics

vxio

vxdmp

Disk-HW

sd

fc fc

sd

powerpath

original I/O

rerouted I/O

The EMC powerpath driver is located at the same level as the Figure 1-16:	
DMP driver. The operating system offers the DMP driver several
paths to each disk, but usage of these paths is caught and redi-
rected by powerpath

The Trouble with Networked Disk Access1.4	

Process Sleep Behavior
Using networks as a transport medium for SCSI-addressed devices is - from a technical
perspective - not a particularly good idea. The reason is a hierarchy of limitations and
intricacies of the UNIX kernel, and of networked systems in general, which may cause
disastrous results under some circumstances. The most common of these circumstances is
an overloaded machine on a poorly performing SAN. Let us look at the individual points
whose combination may cause a machine to hang or panic if you use a SAN:

The first problem is that the UNIX device driver model works in the following way

31

The Trouble with Networked Disk Access

(roughly; the details are much more complicated):
A process that requests an input or output operation will go to sleep and will receive a

wakeup call when the I/O request is ready to be served. For instance, a process that reads
from a terminal, like an interactive UNIX shell or command interpreter, will go to sleep
when the read system call is made. It will wake up when the user has completed his input
by pressing the carriage return key or, if the process uses the terminal in raw mode in order
to interpret the cursor and other special keys, upon any keypress. Since it is not clear when
or if the user will actually create any input (he may have gone to lunch) the device driver
sleeps in an interruptible way. That means that if the user decides to stop the program,
leave the session, turn off his terminal etc., the process will be interrupted or terminated in
a controlled way by the kernel jumping into the process' signal handler code, where excep-
tion processing can be handled by the user process. The drivers for devices that typically
exhibit indefinite or at least long response times, and especially the application that use
these drivers (in this case, anything that uses the terminal, like the shell etc.) take great
care to avoid blocking system resources, i.e. they will typically not lock any data structures
or allocate a lot of kernel memory and so on. After all, these valuable resources could be
blocked for a long time.

Slow Devices vs. Fast Devices
Networks, too, are considered slow devices, just like terminals or serial lines. Due to the
intricacies of network architectures, all sorts of delays are possible and must be reckoned
with. Router reboots, slow or unresponsive nodes, network congestion and so on can all
cause delays. This is represented by the typical timeout values for networks being in the
minute range (usually between 1 and 10 minutes). Of course, network based device drivers
and applications will use kernel resources sparingly and avoid locking any data structures
while waiting for their data to arrive or their timeouts to occur.

32

Disk and Storage System Basics

Drivers for devices which are known to exhibit potentially slow Figure 1-17:
response times sleep interruptibly. They also typically do not
require a lot of resources, and the applications that use them will
not keep important data structures locked while they do I/O.

The opposite example is a SCSI disk driver. The classic SCSI driver issues an I/O request
to a disk that is attached via a parallel data cable to a hard disk drive. The driver expects
the I/O to be served in a very short period of time, since the SCSI command and data
exchange protocol is fairly quick. For that reason it need not be interruptible, which sim-
plifies the context switch and thus improves performance. The device driver and especially
the applications that use it – the file system or database – can also keep some kernel data
structures or code regions locked, or keep large buffers allocated – the I/O response is due
in very short order anyway, so there is no need to go through the trouble of making the
system call interruptible.

Network protocol
driver

Network HBA
driver

Application, e.g.
UNIX shell

Blocks process
interruptibly because

response time is "long"
on networks

Dispatches I/Os
(read from

terminal etc.)

Sends requests
to device

Takes indefinite
time to respond, so
long timeouts are

used

33

The Trouble with Networked Disk Access

Drivers for devices which are considered to respond quickly will Figure 1-18:
allocate resources much more aggressively, since the response is
due in very short order anyway. The I/O is made uninterruptible
for performance and other reasons.

The Problem of Mixing Slow and Fast Devices
The problem of mixing fast and slow devices in the same nexus hierarchy is the following:
Remember that the SCSI protocol driver sits on top of the HBA driver, i.e. a device driver
for a quick device calls the device driver for a networked, or very slow, device. What hap-
pens is that the SCSI driver, depending on how well it is written and how much it sacrifices
reliability to performance, might allocate or lock quite a lot of kernel resources while it is
doing its presumably quick I/O. But then it calls the networked device driver to actually
serve the physical I/O. Everything works out if the device responds quickly, which it usu-
ally does, but if the SAN infrastructure experiences problems because of congestion, not
enough buffer credits, network reconfiguration, slow disk response due to scattered read
latency or otherwise (see page 4), all the resources allocated by either of the device drivers

SCSI protocol
driver

Disk-HW

SCSI HBA driver

Application, e.g.
file system

Blocks process
uninterruptibly because

response time is
"short"

Holds locks,
dispatches I/Os

Sends requests
to disk

Replies very
quickly

34

Disk and Storage System Basics

will remain allocated for a long time. This is not a problem by itself, but if this happens on
a heavily loaded database server that does massively parallelized I/O, the results may render
the system unresponsive or even cause a kernel panic.

Layered device drivers become a big problem if the upper layers Figure 1-19:
expect a rapid response, but the lower layers do not deliver as
rapidly. Locks, memory, and process contexts get stuck for an
extended time, eventually leading to deadlock situations.

Disk-HW

Network protocol
driver (FC)

Network HBA
driver

Encapsulates
SCSI into FC

Application, e.g.
file system

Blocks process
uninterruptibly because

response time is
"short"

Holds locks,
dispatches I/Os

Sends requests
to disk

Takes indefinite
time to respond,
so long timeouts

are used

SAN-Cloud

Disk-HW

SCSI protocol
driver

35

The Trouble with Networked Disk Access

Why Systems Hang – the Deadlock Situation
Because now another problem becomes visible: deadlock avoidance algorithms are not
perfect. Deadlock avoidance belongs to a class of problems known to mathematicians and
computer scientists as NP problems. NP is an abbreviation of non-polynomial [time] and
refers to a complexity class whose problems cannot be solved in a time that is a mere
polynomial function of the problem's complexity. What that means is that while a simple
case of an NP problem could be solved relatively quickly, as the problem grows larger the
time required to find the optimal solution grows at a much faster rate than the problem
size. And very quickly the time becomes so long that the optimal solution to the problem
cannot be guaranteed to be found any more in any reasonable time.

Travelling Salesman Problem

You may be familiar with one example of this class of problems, the travelling sales-
man problem. Imagine a salesman (and by this and all other similar occurrences of "man"
in the text I mean "man" in the sense of "human"; please forgive me for sacrificing politi-
cal correctness for legibility) who needs to visit his clients at several places and is looking
for the best route to visit them all. If there is just one client, the problem is easily solved:
drive to the client, and drive back. If there are two clients the problem is still easy. With
five clients, there may be several orders and routes that look good, and it will be quite
hard to figure out which is the best one. But now imagine a thousand clients and the
poor salesman needs to find the best route. The problem would likely be unsolvable in any
reasonable time.

Finding a Practical Solution

On the other hand, exactly this problem - the problem of finding the best route
through several points - is addressed very effectively on a daily basis by cheap electronic
devices called GPS navigation systems. Is that not a contradiction? No, actually it is not.
The solution that these devices offer is not generally optimal. It is merely very good and
can therefore be calculated in a rather short time. So the programmers of navigation sys-
tem devices are trading off precision for speed. Finding the optimal route would still take
forever, and that would not be useful. So they do try to approach the optimal solution but
then stick with just a very good one to make it practically useful.

Deadlock Avoidance Problem

Operating systems programmers face the same dilemma when trying to avoid dead-
lock situations. If one process or kernel thread holds resource A locked and then requires
resource B, but another process or thread holds resource B and needs resource A, they
get into what is called a deadlock, i.e. they are both stuck until either one releases his
lock to the other one. Of course, operating systems programmers have for decades been
able to handle deadlocks by implementing deadlock avoidance strategies into their ker-
nels. But unfortunately, deadlock avoidance is also a member of the NP problem class.
What that means is that while there are algorithms that work under all circumstances to
resolve any deadlock situation, those algorithms my take literally forever and are therefore
never implemented in any OS. As is the case with navigation systems however, there are

36

Disk and Storage System Basics

very practical algorithms that avoid deadlocks under almost all circumstances which are
deemed reasonable and that have a very short runtime. Only the really pathological cases
are not covered by these algorithms. This kind of algorithm is now found in all modern
operating systems.

Identifying Pathological Cases

What are the pathological cases I mentioned? They are cases in which a large amount
of processes or kernel threads exist, and many locks are held for a long time.

As the number of CPU cores per system grows and I/O parallelism especially in data-
bases increases in order to make use of these cores, the number of processes and threads
that an operating system has to deal with threatens to grow out of bounds of what the
practical deadlock avoidance algorithms can handle.

If in addition to the large number of threads that hold locks in an uninterruptible
context, the underlying network does not function perfectly, then a deadlocked system
becomes a very likely result. This was actually the reason for many of the outages that we
analyzed during the past five years, and the frequency of such events seems to increase.

You need to be aware that large systems doing massively parallel I/O to a SAN will
tend to deadlock when the SAN response time increases. The result will be an unresponsive
system that will eventually either call a system panic and dump its core to the dump device,
or one that will have to be manually revived by causing an NMI (non maskable interrupt)
on the console and rebooting it.

Keep this in mind for later chapters, where we will deal with latency and the problem
sets that arise from it. We will see that light speed is not fast enough in many common
cases, which in the end leads to what looks like an unresponsive SAN. Under these circum-
stances systems will suffer similar deadlock crashes even if the SAN is actually in perfect
working condition. This has indeed become a major problem in many data centers, because
storage is typically bought by size rather than the more appropriate "transactions per sec-
ond per gigabyte" metric. Additionally, SANs are still considered to be very fast, and people
tend to overload their machines.

More on this in the chapter on dual data centers, page 213.

Summary1.4.1	
This chapter provided an overview of disk hardware and its development through the last
twenty or so years. It showed what Moore's Law is and how it makes the speedy hard disks
of yesteryear turn into really slow devices if proper care is not taken to balance the amount
of IOPS (I/Os per second) against the number of physical hard disk spindles available. It
introduces the most important, yet largely unknown, measure required for storage systems
today: TX/sec/GB, or performance per gigabyte. Particular emphasis was put on the unsolv-
able problem of scattered reads, which cannot be tackled with any conventional approach
no matter what the storage vendors may try to argue. The chapter also gave an overview
of RAID software and RAID hardware-assisted systems, also known as "storage arrays", and
where either storage arrays or disks have an advantage over the other.

In addition you got an insight into the basic data structure of "extent", into how
addressing both logical and physical disk blocks work and how the data is laid out on a disk.

37

The Trouble with Networked Disk Access

We further delved into the device drivers used to talk to disks, SAN basics and UNIX device
driver specifics that may sound complicated but the knowledge of which is mandatory in
order to understand and fix problems should they arise. You should now also be familiar
with one of the main reasons for deadlocked systems and why these situations are almost
inevitable unless your SAN is working perfectly – and sometimes even then.

